题目内容
7.若抛物线的焦点在y轴上,点 A(m,-2)在抛物线上,且|AF|=3,求抛物线的标准方程及△OAF的面积.分析 先假设抛物线的方程,利用点 A(m,-2)在抛物线上,且|AF|=3,建立方程,即可求得m的值,即可求抛物线的标准方程及△OAF的面积.
解答 解:依题意,设抛物线方程为x2=-2py (p>0)
∵点 A(m,-2)在抛物线上,且|AF|=3,
∴$\frac{p}{2}$+2=3,∴p=2,
∴抛物线方程为x2=-4y.
A(m,-2)代入可得m=±2$\sqrt{2}$,
∴△OAF的面积S=$\frac{1}{2}×1×2\sqrt{2}$=$\sqrt{2}$.
点评 本题考查的重点是抛物线的标准方程,解题的关键是利用抛物线的定义合理转化,属于基础题.
练习册系列答案
相关题目
8.在半径为R的球内放入5个球,其中有4个球大小相等,两两相外切且均与大球相内切,另一个小球与这四个球均相外切,则这个小球半径为( )
| A. | (3-2$\sqrt{2}$)R | B. | (4-2$\sqrt{3}$)R | C. | (5-2$\sqrt{6}$)R | D. | (6-2$\sqrt{7}$)R |
12.复数(1+i)(1+ai)是实数,则实数a等于( )
| A. | 2 | B. | 1 | C. | 0 | D. | -1 |