题目内容
1.有三种卡片分别写有数字1,10,100,从上述三种卡片中选取若干张,使得这些卡片之和为m(m为正整数).考虑不同的选法种数,例如m=11时有两种选法:“一张卡片写有1,另一张写有10”或“11张写有1的卡片”.(1)若m=100,直接写出选法种数;
(2)设n为正整数,记所选卡片的数字和为100n的选法种数为an,当n≥2时,求数列{an}的通项公式.
分析 (1)对100和10的卡片张数讨论得出答案;
(2)求出{an}的递推式,使用累加法得出an.
解答 解:(1)m=100时选法种数为12.
(2)由(1)知a1=12,
当n≥2时,若至少选一张100的卡片,则除去一张100的卡片,其余数字之和为100(n-1),有an-1种选法,
若不选含有100的卡片,则有(10n+1)种选法.
∴an=an-1+10n+1,即an-an-1=10n+1,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=10n+1+10(n-1)+1+…+10×2+1+12
=$10•\frac{(n+2)(n-1)}{2}+n-1+12=5{n^2}+6n+1(n≥2)$.
点评 本题考查了数列的递推式,数列的通项公式的求法,属于中档题.
练习册系列答案
相关题目
11.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140}),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
| 质量指标值m | m<185 | 185≤m<205 | m≥205 |
| 等级 | 三等品 | 二等品 | 一等品 |
(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140}),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
12.已知x∈R,则“x<1”是“x2<1”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分又不必要条件 |
13.已知定义在(0,+∞)上的函数f(x)的导函数为f'(x),且f'(x)(xlnx2)>2f(x),则( )
| A. | 6f(e)>2f(e3)>3f(e2) | B. | 6f(e)<3f(e2)<2f(e3) | C. | 6f(e)>3f(e2)>2f(e3) | D. | 6f(e)<2f(e3)<3f(e2) |
10.
已知函数f(x)=sin(ωx+$\frac{π}{6}$)+ω (ω>0)的部分图象如图所示,则下列选项判断错误的是( )
| A. | f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x) | B. | f(x)+f(-x-$\frac{π}{3}$)=1 | C. | f($\frac{7π}{3}$)=2 | D. | |MN|=π |