题目内容
6.设点A(1,2),非零向量$\overrightarrow a=({m,n})$,若对于直线3x+y-4=0上任意一点P,$\overrightarrow{AP}•\overrightarrow a$恒为定值,则$\frac{m}{n}$=3.分析 设点P(x,y),由点P为直线上的任意一点,表示出向量$\overrightarrow{AP}$,由$\overrightarrow{AP}$•$\overrightarrow{a}$恒为定值,求出m、n的关系,再计算$\frac{m}{n}$.
解答 解:设点P(x,y),
∵点P为直线3x+y-4=0上的任意一点,
∴y=4-3x,
∴$\overrightarrow{AP}$=(x-1,2-3x);
又非零向量$\overrightarrow{a}$=(m,n),
∴$\overrightarrow{AP}$•$\overrightarrow{a}$=m(x-1)+n(2-3x)=(m-3n)x+(2n-m),且恒为定值,
∴m-3n=0,即m=3n;
∴$\frac{m}{n}$=$\frac{3n}{n}$=3.
故答案为:3.
点评 本题考查了平面向量数量积的定义与应用问题,是中档题.
练习册系列答案
相关题目
16.设集合A={x|(2x-1)(x-3)>0},B={x|x-1<0},则A∩B=( )
| A. | (-∞,1)∪(3,+∞) | B. | (-∞,1) | C. | $({-∞,\frac{1}{2}})$ | D. | $({\frac{1}{2},1})$ |
17.已知函数f(x)为偶函数,当x<0时,f(x)=ln(-x)-ax.若直线y=x与曲线y=f(x)至少有两个交点,则实数a的取值范围是( )
| A. | $[{-1-\frac{1}{e},1-\frac{1}{e}}]$ | B. | $({-1-\frac{1}{e},-1})∪\left\{{1-\frac{1}{e}}\right\}$ | ||
| C. | $({1-\frac{1}{e},+∞})$ | D. | $({-1-\frac{1}{e},-1})∪[{1-\frac{1}{e},+∞})$ |
15.学校为了了解高三学生每天回归教材自主学习的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天回归教材自主学习的时间超过5小时的学生非常有可能在高考中缔造神奇,我们将他(她)称为“考神”,否则为“非考神”,调查结果如表:
(Ⅰ)根据表中数据能否判断有60%的把握认为“考神”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“考神”和“非考神”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“考神”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| 考神 | 非考神 | 合计 | |
| 男生 | 26 | 24 | 50 |
| 女生 | 30 | 20 | 50 |
| 合计 | 56 | 44 | 100 |
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“考神”和“非考神”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“考神”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
3.若实数x,y,满足3x-4y-5=0,则$\sqrt{{x^2}+{y^2}}$的最小值是( )
| A. | $\sqrt{5}$ | B. | 5 | C. | $\frac{\sqrt{5}}{5}$ | D. | 1 |