题目内容

5.在△ABC中,内角A,B,C所对的边分别为a,b,c,sinAsinBcosC=sin2C.
(Ⅰ)求$\frac{{{a^2}+{b^2}}}{c^2}$的值;
(Ⅱ)若${a^2}=\frac{2}{3}{c^2}$,且△ABC的面积${S_{△ABC}}=2\sqrt{5}$,求c的值.

分析 (I)由已知及正弦定理可得$cosC=\frac{c^2}{ab}$,结合余弦定理即可解得$\frac{{{a^2}+{b^2}}}{c^2}$的值.
(II)由${a^2}=\frac{2}{3}{c^2}$,a2+b2=3c2得${b^2}=\frac{7}{3}{c^2}$,由余弦定理可求cosC,利用同角三角函数基本关系式可求sinC,利用三角形面积公式即可计算得解.

解答 (本小题满分15分)
解:( I)由已知sinA•sinB•cosC=sin2C得到$cosC=\frac{c^2}{ab}$. (2分)
又$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}$.(4分)
故$\frac{{{a^2}+{b^2}}}{c^2}$的值为3…(6分)
( II)由${a^2}=\frac{2}{3}{c^2}$,a2+b2=3c2得${b^2}=\frac{7}{3}{c^2}$. (8分)
由余弦定理得$cosC=\frac{{3\sqrt{14}}}{14}$.   (10分)
故$sinC=\frac{{\sqrt{70}}}{14}$.    (12分)
故$S=\frac{1}{2}•\sqrt{\frac{2}{3}}c•\sqrt{\frac{7}{3}}c•sinC=2\sqrt{5}$,得$c=2\sqrt{3}$.(15分)

点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网