题目内容
9.已知函数f(x)=$\sqrt{3}$sin$\frac{x}{3}$-cos$\frac{x}{3}$.(1)求函数f(x)的对称轴方程及相邻两条对称轴间的距离d;
(2)设α、β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.
分析 (1)化简函数f(x)的解析式,利用正弦函数的图象性质求出f(x)图象的对称轴方程以及相邻两条对称轴间的距离d;
(2)由题意求出sinα、cosα和cosβ、sinβ的值,再计算cos(α+β)的值.
解答 解:(1)∵f(x)=$\sqrt{3}$sin$\frac{x}{3}$-cos$\frac{x}{3}$=2sin($\frac{x}{3}$-$\frac{π}{6}$);
令$\frac{x}{3}$-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,
解得x=3kπ+2π,k∈Z,
∴f(x)图象的对称轴方程是x=3kπ+2π,k∈Z;
且相邻两条对称轴间的距离d=(3π+2π)-2π=3π;
(2)由α、β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=2sinα=$\frac{10}{13}$,
∴sinα=$\frac{5}{13}$,cosα=$\frac{12}{13}$;
f(3β+2π)=2sin(β+$\frac{π}{2}$)=2cosβ=$\frac{6}{5}$,
∴cosβ=$\frac{3}{5}$,sinβ=$\frac{4}{5}$;
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{12}{13}$×$\frac{3}{5}$-$\frac{5}{13}$×$\frac{4}{5}$=$\frac{16}{65}$.
点评 本题考查了正弦函数的图象与性质的应用问题,也考查了同角的三角函数关系与两角和的余弦公式应用问题.
练习册系列答案
相关题目
3.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,则不同的安排种数为( )
| A. | 1440 | B. | 3600 | C. | 5040 | D. | 5400 |
4.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.若a=3,b=4,∠C=60°,则c等于( )
| A. | 25-12$\sqrt{3}$ | B. | 13 | C. | $\sqrt{13}$ | D. | $\sqrt{37}$ |
17.在△ABC中,a,b,c分别为角A,B,C的对边,a=1,c=2,B=60°,则△ABC的面积S=( )
| A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
4.集合A={x∈Z|x2-x-6≤0},从A中随机取出一个元素m,设ξ=m2,则Eξ=( )
| A. | $\frac{3}{2}$ | B. | $\frac{7}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{19}{6}$ |
14.设D为△ABC所在平面内一点,$\overrightarrow{BC}$=4$\overrightarrow{CD}$,则( )
| A. | $\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AD}$=-$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{5}{4}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AD}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$ |
1.函数y=sin(lnx)的导数y′=( )
| A. | ln(cosx) | B. | cos(lnx) | C. | -$\frac{1}{x}$cos(lnx) | D. | $\frac{1}{x}$cos(lnx) |
18.设f(x)=$\left\{\begin{array}{l}{{x}^{2}+3,(x>0)}\\{6xcosπx-1,(x≤0)}\end{array}\right.$,g(x)=kx-1,(x∈R),若函数y=f(x)-g(x)在x∈(-2,4)内有3个零点,则实数k的取值范围是( )
| A. | (-6,4) | B. | [4,6) | C. | (5,6)∪{4} | D. | [5,6)∪{4} |