题目内容
19.(1)求cosB的值;
(2)求CD的长.
分析 (1)在△ABC中,求出sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$.,sin∠ACB=$\frac{12}{13}$.
可得cosB=-cos(A+∠ACB)=sinAsin∠ACB-cosAcosB;
(2)在△ABC中,由正弦定理得,AB=$\frac{BC}{sinA}$sin∠ACB.
在△BCD中,由余弦定理得,CD=$\sqrt{B{D}^{2}+B{C}^{2}-2BD•BCcosB}$.
解答 解:(1)在△ABC中,cosA=$\frac{4}{5}$,A∈(0,π),![]()
所以sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$.
同理可得,sin∠ACB=$\frac{12}{13}$.
所以cosB=cos[π-(A+∠ACB)]=-cos(A+∠ACB)
=sinAsin∠ACB-cosAcos∠ACB
=$\frac{3}{5}×\frac{12}{13}-\frac{4}{5}×\frac{5}{13}=\frac{16}{65}$;
(2)在△ABC中,由正弦定理得,AB=$\frac{BC}{sinA}$sin∠ACB=$\frac{13}{\frac{3}{5}}×\frac{12}{13}=20$.
又AD=3DB,所以DB=$\frac{1}{4}AB=5$.
在△BCD中,由余弦定理得,CD=$\sqrt{B{D}^{2}+B{C}^{2}-2BD•BCcosB}$
=$\sqrt{{5}^{2}+1{3}^{2}-2×5×13×\frac{16}{65}}$=9$\sqrt{2}$.
点评 本题考查了正余弦定理、三角恒等变形,属于中档题.
练习册系列答案
相关题目
9.已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三个元素,则实数m的取值范围是( )
| A. | [3,6) | B. | [1,2) | C. | [2,4) | D. | (2,4] |
10.17世纪日本数学家们对这个数学关于体积方法的问题还不了解,他们将体积公式“V=kD3”中的常数k称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V=kD3,其中,在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长,假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k1,k2,k3=( )
| A. | $\frac{π}{4}$:$\frac{π}{6}$:1 | B. | $\frac{π}{6}$:$\frac{π}{4}$:2 | C. | 1:3:$\frac{12}{π}$ | D. | 1:$\frac{3}{2}$:$\frac{6}{π}$ |
14.若x,y满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{2x+y≤4}\end{array}}\right.$,z=x+y+3与z=x+ny取得最大值的最优解相同,则实数n的取值范围是( )
| A. | {1} | B. | $({-∞,\frac{1}{2}})$ | C. | $({\frac{1}{2},+∞})$ | D. | [1,+∞) |
4.已知集合$A=\left\{{x\left|{y=lgx}\right.}\right\},B=\left\{{y|y=\sqrt{x-1}}\right\}$,则A∪B=( )
| A. | [1,+∞) | B. | (1,+∞) | C. | [0,+∞) | D. | (0,+∞) |
11.某研究性学习小组调查研究性别对喜欢吃甜食的影响,部分统计数据如表:
附表:
经计算K2=10,则下列选项正确的是( )
| 女生 | 男生 | 合计 | |
| 喜欢吃甜食 | 8 | 4 | 12 |
| 不喜欢吃甜食 | 2 | 16 | 18 |
| 合计 | 10 | 20 | 30 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | 有99.5%的把握认为性别对喜欢吃甜食无影响 | |
| B. | 有99.5%的把握认为性别对喜欢吃甜食有影响 | |
| C. | 有99.9%的把握认为性别对喜欢吃甜食无影响 | |
| D. | 有99.9%的把握认为性别对喜欢吃甜食有影响 |
7.已知函数f(x)=lnx,若4f′(x)+x≥a恒成立,则a的取值范围是( )
| A. | a≥4 | B. | a≤4 | C. | a≥2$\sqrt{2}$ | D. | a≤2$\sqrt{2}$ |
8.已知函数g(x)的导函数g'(x)=ex,且g(0)g'(1)=e,(其中e为自然对数的底数).若?x∈(0,+∞),使得不等式$g(x)<\frac{x-m+3}{{\sqrt{x}}}$成立,则实数m的取值范围是( )
| A. | (-∞,1) | B. | (-∞,3) | C. | (3,+∞) | D. | (-∞,4-e) |