题目内容
17.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一条渐近线的方程为y=3x,则b=3.分析 根据题意,由双曲线的方程可得其渐近线方程为y=±bx,结合题意可得b的值,即可得答案.
解答 解:根据题意,双曲线的方程为:${x^2}-\frac{y^2}{b^2}=1\;(b>0)$,
则其渐近线方程为:y=±bx,
若其一条渐近线的方程为y=3x,
则b=3;
故答案为:3.
点评 本题考查双曲线的几何性质,注意b的范围进行取舍.
练习册系列答案
相关题目
7.棱长为4的正方体的内切球的表面积为( )
| A. | 4π | B. | 12π | C. | 16π | D. | 20π |
8.某同学的父亲决定今年夏天卖西瓜赚钱,根据去年6月份的数据统计连续五天内每天所卖西瓜的个数与温度之间的关系如表:
(1)求这五天内所卖西瓜个数的平均值和方差;
(2)求变量x.y之间的线性回归方程,并预测当温度为30℃时所卖西瓜的个数.
附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$(精确到0.1)
| 温度x(℃) | 32 | 33 | 35 | 37 | 38 |
| 西瓜个数y | 20 | 22 | 24 | 30 | 34 |
(2)求变量x.y之间的线性回归方程,并预测当温度为30℃时所卖西瓜的个数.
附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$(精确到0.1)
5.已知f(x)是定义在R上的奇函数,且f(x)=f(x+2),当x∈(0,1)时,f(x)=tan(x-$\frac{π}{6}$),则函数f(x)在区间[0,4]上的零点个数是( )
| A. | 6 | B. | 7 | C. | 8 | D. | 9 |
12.已知抛物线y2=2px(p>0)过点A(2,2),则它的准线方程是( )
| A. | $x=-\frac{1}{2}$ | B. | $y=-\frac{1}{2}$ | C. | $x=\frac{1}{2}$ | D. | $y=\frac{1}{2}$ |
9.复数z=(a+i)(-3+ai)(a∈R),若z<0,则a的值是( )
| A. | a=$\sqrt{3}$ | B. | a=-$\sqrt{3}$ | C. | a=-1 | D. | a=1 |
6.
将函数y=$\sqrt{3}$sin($\frac{π}{4}$x)的图象向左平移3个单位,得函数y=$\sqrt{3}$sin($\frac{π}{4}$x+φ)(|φ|<π)的图象(如图),点M,N分别是函数f(x)图象上y轴两侧相邻的最高点和最低点,设∠MON=θ,则tan(φ-θ)的值为( )
| A. | 1-$\sqrt{3}$ | B. | 2-$\sqrt{3}$ | C. | 1+$\sqrt{3}$ | D. | -2+$\sqrt{3}$ |