题目内容

16.若向量$\overrightarrow{a}$=(2,3,λ),$\overrightarrow{b}$=(-1,1,$\frac{\sqrt{6}}{3}$)的夹角为60°,则λ等于(  )
A.$\frac{23}{12}$B.$\frac{\sqrt{6}}{12}$C.$\frac{23\sqrt{6}}{12}$D.-$\frac{23\sqrt{6}}{12}$

分析 根据平面向量的数量积类比计算空间向量$\overrightarrow{a}$、$\overrightarrow{b}$的数量积,列出方程求出λ的值.

解答 解:∵向量$\overrightarrow{a}$=(2,3,λ),$\overrightarrow{b}$=(-1,1,$\frac{\sqrt{6}}{3}$),
∴$\overrightarrow{a}$•$\overrightarrow{b}$=-2+3+$\frac{\sqrt{6}}{3}$λ=$\frac{\sqrt{6}}{3}$λ+1,
|$\overrightarrow{a}$|=$\sqrt{{2}^{2}{+3}^{2}{+λ}^{2}}$=$\sqrt{{λ}^{2}+13}$,|$\overrightarrow{b}$|=$\sqrt{{(-1)}^{2}{+1}^{2}{+(\frac{\sqrt{6}}{3})}^{2}}$=$\sqrt{\frac{8}{3}}$,
∵$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos60°,
即$\frac{\sqrt{6}}{3}$λ+1=$\sqrt{{λ}^{2}+13}$×$\sqrt{\frac{8}{3}}$×$\frac{1}{2}$,
∴$\frac{\sqrt{6}}{3}$λ+1=$\sqrt{\frac{2{(λ}^{2}+13)}{3}}$,解得λ=$\frac{23\sqrt{6}}{12}$.
故选:C.

点评 本题考查了空间向量数量积的应用问题,也考查了解方程的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网