题目内容
已知非空数集 A={x∈R|x2=a},则实数a的取值范围为( )
| A、a=0 | B、a>0 |
| C、a≠0 | D、a≥0 |
考点:空集的定义、性质及运算
专题:集合
分析:集合A的元素是方程x2=a的实数根,由集合A={x|x2=a,x∈R}是非空集合,所以只要使方程x2=a有实根即可
解答:
解:由于集合A={x|x2=a,x∈R}是非空集合,所以方程x2=a有实数根,
则a≥0,则实数a的取值范围是[0,+∞).
故选:D
则a≥0,则实数a的取值范围是[0,+∞).
故选:D
点评:本题考查了空集的定义,性质及运算,考查了一元二次方程有实根的条件,是基础题.
练习册系列答案
相关题目
下列函数中既是偶函数,又在(0,+∞)上是单调递增函数的是( )
| A、y=-x2+1 |
| B、y=|x|+1 |
| C、y=log2x+1 |
| D、y=x3 |
若a=(
)2,b=log2
,c=2
,则a、b、c的大小关系为.
| 2 |
| 5 |
| 5 |
| 6 |
| 2 |
| 5 |
| A、a<b<c |
| B、b<a<c |
| C、b<c<a |
| D、a<c<b |
在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD的中点,若
•
=1,则AB的长为( )
| AD |
| BE |
A、
| ||
| B、4 | ||
| C、5 | ||
| D、6 |