题目内容

19.若函数y=f(x)(x∈R)满足f(x-2)=f(x),且x∈[-1,1],f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$则函数h(x)=f(x)-g(x)在区间[-4,5]内零点的个数为(  )
A.6B.7C.8D.9

分析 由函数y=f(x)(x∈R)满足f(x-2)=f(x),可知函数y=f(x)(x∈R)是周期为2的函数,进而根据x∈[-1,1]时,f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$的图象得到交点个数.

解答 解:因为f(x-2)=f(x),所以函数y=f(x)(x∈R)是周期为2函数.
因为x∈[-1,1]时,f(x)=1-x2,所以作出它的图象,
利用函数y=f(x)(x∈R)是周期为2函数,可作出y=f(x)在区间[-4,5]上的图象,如图所示
再作出函数g(x)=$\left\{\begin{array}{l}{lgx(x>0)}\\{-\frac{1}{x}(x<0)}\end{array}\right.$的图象,
容易得出到交点为7个.
故选:B.

点评 本题的考点是函数零点与方程根的关系,主要考查函数零点的定义,关键是正确作出函数图象,注意掌握周期函数的一些常见结论:若f(x+a)=f(x),则周期为a;若f(x+a)=-f(x),则周期为2a;若f(x+a)=$\frac{1}{f(x)}$,则周期为2a.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网