题目内容

4.如图1,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC=4,O是边AB的中点,将三角形AOD饶边OD所在直线旋转到A,OD位置,使得∠A,OB=120°,如图2,设m为平面A1DC与平面A1OB的交线.

(1)判断直线DC与直线m的位置关系并证明;
(2)若在直线m上的点G满足OG⊥A1D,求出A1G的长;
(3)求直线A1O与平面A1BD所成角的正弦值.

分析 (1)利用线面平行的性质判断并证明直线DC与直线m的位置关系;
(2)A1D在平面A1OB中的射影为A1O,OG⊥A1O,即可求出A1G的长;
(3)求出O到平面A1DB的距离,即可求直线A1O与平面A1BD所成角的正弦值.

解答 解:(1)∵DC∥OB,DC?平面A1OB,OB?平面A1OB
∴DC∥平面A1OB,
∵m为平面A1DC与平面A1OB的交线,
∴DC∥m;
(2)由题意,A1D在平面A1OB中的射影为A1O,
∴OG⊥A1O,∴A1G=2A1O=4;
(3)△A1OB中,A1B=$\sqrt{4+4-2×2×2×(-\frac{1}{2})}$=2$\sqrt{3}$,
∵A1D=DB=2$\sqrt{2}$,∴${S}_{△{A}_{1}DB}$=$\frac{1}{2}×2\sqrt{3}×\sqrt{8-3}$=$\sqrt{15}$,
设O到平面A1DB的距离为h,则$\frac{1}{3}\sqrt{15}•h=\frac{1}{3}•\frac{1}{2}•2•2•\frac{\sqrt{3}}{2}$,
∴h=$\frac{\sqrt{5}}{5}$,
∵A1O=2,
∴直线A1O与平面A1BD所成角的正弦值=$\frac{\sqrt{5}}{10}$.

点评 本题考查线面平行的判定与性质,考查线面垂直的证明,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网