题目内容

9.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是(  )
A.1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=2-$\frac{1}{{2}^{n}}$B.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$<1
C.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1D.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$>1

分析 根据已知可得每次截取的长度构造一个以$\frac{1}{2}$为首项,以$\frac{1}{2}$为公比的等比数列,但累加和小于1,进而得到答案.

解答 解:根据已知可得每次截取的长度构造一个以$\frac{1}{2}$为首项,以$\frac{1}{2}$为公比的等比数列,
∵$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$<1,
故反映这个命题本质的式子是$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$<1,
故选:B.

点评 本题考查的知识点是等比数列的前n项和公式,数列的应用,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网