题目内容
6.已知数列{an}的前n项和Sn=$\frac{{{n^2}+n}}{2}$,数列{bn}的通项为bn=f(n),且f(n)满足:①f(1)=$\frac{1}{2}$;②对任意正整数m,n,都有f(m+n)=f(m)f(n)成立.(1)求an与bn;
(2)设数列{anbn}的前n项和为Tn,求Tn.
分析 (1)根据条件结合数列的递推公式以及等比数列的定义进行求解即可.
(2)求出数列{anbn}的通项公式,利用错位相减法进行求解即可.
解答 解:(1)∵数列{an}的前n项和Sn=$\frac{{{n^2}+n}}{2}$,
∴当n≥2时,an=Sn-Sn-1=$\frac{{{n^2}+n}}{2}$-$\frac{(n-1)^{2}+n-1}{2}$=n,
当n=1时,a1=S1=$\frac{1+1}{2}=1$满足an=n,
即an=n.
∵对任意正整数m,n,都有f(m+n)=f(m)f(n),
∴当m=1时,f(1+n)=f(1)f(n)=$\frac{1}{2}$f(n),
即f(n)是公比q=$\frac{1}{2}$的等比数列,则bn=f(n)=$\frac{1}{2}$•($\frac{1}{2}$)n-1=($\frac{1}{2}$)n,
(2)anbn=n•($\frac{1}{2}$)n,
则Tn=1•($\frac{1}{2}$)+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n,①
$\frac{1}{2}$Tn=($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+3•($\frac{1}{2}$)4+…+(n-1)•($\frac{1}{2}$)n+n•($\frac{1}{2}$)n+1,②
两式相减得$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+($\frac{1}{2}$)4+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1=1-($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
即Tn=2-($\frac{1}{2}$)n-1-n•($\frac{1}{2}$)n•
点评 本题主要考查数列通项公式以及数列求和的计算,根据递推数列以及等比数列求出数列的通项公式以及利用错位相减法是解决本题的关键.考查学生的计算能力.
| A. | 30° | B. | 60° | C. | 30°或150° | D. | 60°或120° |
| x | 11 | 10.5 | 10 | 9.5 | 9 |
| y | 5 | 6 | 8 | 10 | 10 |
| A. | 16个 | B. | 20个 | C. | 24个 | D. | 28个 |
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 居民生活用水量(万吨) | 236 | 246 | 257 | 276 | 286 |
(Ⅱ)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.
参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.
| A. | $\frac{1}{3n+1}$ | B. | $\frac{n}{3n+1}$ | C. | $\frac{1}{3n-2}$ | D. | $\frac{n}{2(3n+2)}$ |
| x(月份) | 1 | 2 | 3 | 4 | 5 |
| y(万盒) | 5 | 5 | 6 | 6 | 8 |
| A. | 8.1万盒 | B. | 8.2万盒 | C. | 8.9万盒 | D. | 8.6万盒 |