题目内容

18.数列{an}满足a1=$\frac{1}{2}$,且对于任意n∈N+都满足an+1=$\frac{a_n}{{3{a_n}+1}}$,则数列{an•an+1}的前n项和为(  )
A.$\frac{1}{3n+1}$B.$\frac{n}{3n+1}$C.$\frac{1}{3n-2}$D.$\frac{n}{2(3n+2)}$

分析 数列{an}满足a1=$\frac{1}{2}$,且对于任意n∈N+都满足an+1=$\frac{a_n}{{3{a_n}+1}}$,两边取倒数可得:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=3,利用等差数列的通项公式、“裂项求和”方法即可得出.

解答 解:∵数列{an}满足a1=$\frac{1}{2}$,且对于任意n∈N+都满足an+1=$\frac{a_n}{{3{a_n}+1}}$,
两边取倒数可得:$\frac{1}{{a}_{n+1}}$=3+$\frac{1}{{a}_{n}}$,即:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=3,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为2,公差为3.
∴$\frac{1}{{a}_{n}}$=2+3(n-1)=3n-1,
∴an=$\frac{1}{3n-1}$,
∴an•an+1=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$,
∴数列{an•an+1}的前n项和=$\frac{1}{3}[(\frac{1}{2}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{8})$+…+$(\frac{1}{3n-1}-\frac{1}{3n+2})]$
=$\frac{1}{3}(\frac{1}{2}-\frac{1}{3n+2})$
=$\frac{n}{6n+4}$.
故选:D.

点评 本题考查了“裂项求和”方法、等差数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网