题目内容

等比数列{an}中,a1,a2,a3分别是下表一、二、三行中的某一个数,且a1,a2,a3中任何两个数不在下表同一列,且a1<a2<a3
一列 二列 三列
第一行 2 3 12
第二行 4 6 14
第三行 8 9 18
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+lnan,求数列{bn}前n项和.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由图知a1=2,a2=6,a3=18,由此能求出an=2•3n-1
(2)bn=an+lnan=2•3n-1+[ln2+(n-1)ln3],由此能求出数列{bn}前n项和.
解答: 解:(1)由图知等比数列{an}中,
a1=2,a2=6,a3=18,
q=
a2
a1
=
6
2
=3

an=2•3n-1
(2)bn=an+lnan=2•3n-1+lg(2•3n-1
=2•3n-1+[ln2+(n-1)ln3],
∴Sn=
2•(1-3n)
1-3
+
n[lg2+ln2+(n-1)ln3]
3

=3n-1+nln2+
1
2
n(n-1)ln3
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网