题目内容
已知数列{an}中,an=
,求数列{an}的前n项和Sn.
| n |
| 3n |
考点:数列的求和
专题:等差数列与等比数列
分析:利用错位相减法求解.
解答:
解:∵an=
,
∴Sn=
+
+
+…+
,①
Sn=
+
+
+…+
,②
①-②,得
Sn=
+
+
+…+
-
=
-
=
(1-
)-
,
∴Sn=
-
-
.
| n |
| 3n |
∴Sn=
| 1 |
| 3 |
| 2 |
| 32 |
| 3 |
| 33 |
| n |
| 3n |
| 1 |
| 3 |
| 1 |
| 32 |
| 2 |
| 33 |
| 3 |
| 34 |
| n |
| 3n+1 |
①-②,得
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| n |
| 3n+1 |
=
| ||||
1-
|
| n |
| 3n+1 |
=
| 1 |
| 2 |
| 1 |
| 3n |
| n |
| 3n+1 |
∴Sn=
| 3 |
| 4 |
| 1 |
| 4×3n-1 |
| n |
| 2×3n |
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目