题目内容

8.观察如图算式:
23=3+5;
33=7+9+11;
43=13+15+17+19;
53=21+23+25+27+29

203=a1+a2+a3+…,其中a1<a2<a3<…,那么a1=381.

分析 可得规律:第n行的左边是n3,右边是n个连续奇数的和,设第n行的第一个数为an,累加可得an,计算可得a20

解答 解:由题意可得第n行的左边是n3,右边是n个连续奇数的和,
设第n行的第一个数为an,则有a2-a1=3-1=2,
a3-a2=7-3=4,…an-an-1=2(n-1),
以上(n-1)个式子相加可得an-a1=$\frac{(n-1)[2+2(n-1)]}{2}$,
故an=n2-n+1,
∴a20=202-20+1=381.
故答案为:381.

点评 本题考查归纳推理,涉及累加法求数列的通项公式,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网