题目内容

已知fn(x)=(1+2
x
n,n∈N*
(1)若g(x)=f4(x)+f5(x)+f6(x),求g(x)中含x2项的系数;
(2)若pn是fn(x)展开式中所有无理项的二项式系数和,数列{an}是各项都大于1的数组成的数列,试用数学归纳法证明:
(1+a1)(1+a2)…(1+an)
a1a2an+1
pn
考点:第二数学归纳法,二项式系数的性质
专题:压轴题,点列、递归数列与数学归纳法
分析:(1)先确定函数g(x),再利用二项式定理可得g(x)中含x2项的系数;
(2)确定pn的表达式,根据数学归纳法的步骤,先证n=1时成立,再设n=k时成立,利用归纳假设证明n=k+1时成立即可.
解答: 解:(1)g(x)=f4(x)+f5(x)+f6(x)=(1+2
x
4+(1+2
x
5+(1+2
x
6
∴g(x)中含x2项的系数为 16
C
4
4
+5
C
4
5
×16+15
C
4
6
×16=336.(3分)
(2)证明:由题意,pn=2n-1.(5分)
①当n=1时,p1(a1+1)=a1+1,成立;
②假设当n=k时,pk(a1a2…ak+1)≥(1+a1)(1+a2)…(1+ak)成立,
当n=k+1时,(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k-1(a1a2…ak+1)(1+ak+1
=2k-1(a1a2…akak+1+a1a2…ak+ak+1+1).(*)
∵ak>1,a1a2…ak(ak+1-1)≥ak+1-1,即a1a2…akak+1+1≥a1a2…ak+ak+1
代入(*)式得(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k(a1a2…akak+1+1)成立.
综合①②可知,pn(a1a2…an+1)≥(1+a1)(1+a2)…(1+an)对任意n∈N*成立,
(1+a1)(1+a2)…(1+an)
a1a2an+1
pn
对任意n∈N*成立.(10分)
点评:本题考查二项式定理,考查数学归纳法的运用,掌握数学归纳法的证题步骤是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网