题目内容

11.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=6,P是E右支上一点,PF1与y轴交于点A,△PAF2的内切圆在边AF2上的切点为Q,若|AQ|=$\sqrt{3}$,则E的离心率是(  )
A.2$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 由双曲线的定义和内切圆的切线性质:圆外一点向圆引切线,则切线长相等,结合离心率公式即可得到所求值.

解答 解:设△PAF2的内切圆在边PF2上的切点为M,在AP上的切点为N,
则|PM|=|PN|,|AQ|=|AN|=$\sqrt{3}$,|QF2|=|MF2|,
由双曲线的对称性可得|AF1|=|AF2|=|AQ|+|QF2|=$\sqrt{3}$+|QF2|,
由双曲线的定义可得|PF1|-|PF2|=|PA|+|AF1|-|PM|-|MF2|
=$\sqrt{3}$+|QF2|+|AN|+|NP|-|PM|-|MF2|
=2$\sqrt{3}$=2a,解得a=$\sqrt{3}$,
又|F1F2|=6,即有c=3,
离心率e=$\frac{c}{a}$=$\sqrt{3}$.
故选:C.

点评 本题考查双曲线的离心率的求法,考查内切圆的切线性质,注意运用双曲线的定义是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网