题目内容
11.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=6,P是E右支上一点,PF1与y轴交于点A,△PAF2的内切圆在边AF2上的切点为Q,若|AQ|=$\sqrt{3}$,则E的离心率是( )| A. | 2$\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
分析 由双曲线的定义和内切圆的切线性质:圆外一点向圆引切线,则切线长相等,结合离心率公式即可得到所求值.
解答 解:设△PAF2的内切圆在边PF2上的切点为M,在AP上的切点为N,
则|PM|=|PN|,|AQ|=|AN|=$\sqrt{3}$,|QF2|=|MF2|,
由双曲线的对称性可得|AF1|=|AF2|=|AQ|+|QF2|=$\sqrt{3}$+|QF2|,
由双曲线的定义可得|PF1|-|PF2|=|PA|+|AF1|-|PM|-|MF2|
=$\sqrt{3}$+|QF2|+|AN|+|NP|-|PM|-|MF2|
=2$\sqrt{3}$=2a,解得a=$\sqrt{3}$,
又|F1F2|=6,即有c=3,
离心率e=$\frac{c}{a}$=$\sqrt{3}$.
故选:C.
点评 本题考查双曲线的离心率的求法,考查内切圆的切线性质,注意运用双曲线的定义是解题的关键,属于中档题.
练习册系列答案
相关题目
1.若存在实数a,使得函数$f(x)=\left\{{\begin{array}{l}{-{x^2}+2(a+1)x+4}&{0<x≤1}\\{{x^a}}&{x>1}\end{array}}\right.$在(0,+∞)上为减函数,则实数a的取值范围是( )
| A. | a<0 | B. | a≤-1 | C. | -2≤a≤-1 | D. | -2≤a<0 |
19.过点M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)作圆x2+y2=1的切线l,l与x轴的交点为抛物线E:y2=2px(p>0)的焦点,l与抛物线E交于A、B两点,则AB中点到抛物线E的准线的距离为( )
| A. | $\frac{5\sqrt{2}}{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{7}{2}$$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
6.设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,其中m≥2,则nSn的最小值为( )
| A. | -3 | B. | -5 | C. | -6 | D. | -9 |
16.已知复数z=2+i,则$\frac{\overline{z}}{z}$=( )
| A. | $\frac{3}{5}$-$\frac{4}{5}$i | B. | -$\frac{3}{5}$+$\frac{4}{5}$i | C. | $\frac{5}{3}$-$\frac{4}{3}$i | D. | -$\frac{5}{3}$+$\frac{4}{3}$i |
3.集合A={x|x2-x-6≤0},B={x|x<-1},则A∩(∁RB)等于( )
| A. | {x|x>-1} | B. | {x|x≥-1} | C. | {x|-1≤x≤3} | D. | {x|-2≤x≤1} |