题目内容
16.已知复数z=2+i,则$\frac{\overline{z}}{z}$=( )| A. | $\frac{3}{5}$-$\frac{4}{5}$i | B. | -$\frac{3}{5}$+$\frac{4}{5}$i | C. | $\frac{5}{3}$-$\frac{4}{3}$i | D. | -$\frac{5}{3}$+$\frac{4}{3}$i |
分析 由z=2+i,得$\overline{z}=2-i$,然后代入$\frac{\overline{z}}{z}$,再由复数代数形式的乘除运算化简得答案.
解答 解:由z=2+i,得$\overline{z}=2-i$,
则$\frac{\overline{z}}{z}$=$\frac{2-i}{2+i}=\frac{(2-i)^{2}}{(2+i)(2-i)}=\frac{3-4i}{5}=\frac{3}{5}-\frac{4}{5}i$,
故选:A.
点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
6.已知偶函数f(x)在(0,+∞)上递减,已知a=0.2${\;}^{\sqrt{2}}$,b=log${\;}_{\sqrt{2}}$0.2,c=$\sqrt{2}$0.2,则f(a),f(b),f(c) 大小为( )
| A. | f(a)>f(b)>f(c) | B. | f(a)>f(c)>f(b) | C. | f(b)>f(a)>f(c) | D. | f(c)>f(a)>f(b) |
11.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=6,P是E右支上一点,PF1与y轴交于点A,△PAF2的内切圆在边AF2上的切点为Q,若|AQ|=$\sqrt{3}$,则E的离心率是( )
| A. | 2$\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
8.已知某次数学考试的成绩服从正态分布N(116,82),则成绩在140分以上的考生所占的百分比为( )
(附:正态总体在三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)=0.6826;②P(μ-2σ<X≤μ+2σ)=0.9544;③P(μ-3σ<X≤μ+3σ)=0.9974)
(附:正态总体在三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)=0.6826;②P(μ-2σ<X≤μ+2σ)=0.9544;③P(μ-3σ<X≤μ+3σ)=0.9974)
| A. | 0.3% | B. | 0.23% | C. | 1.3% | D. | 0.13% |
5.在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$)
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
| 成绩/编号 | 1 | 2 | 3 | 4 | 5 |
| 物理(x) | 90 | 85 | 74 | 68 | 63 |
| 数学(y) | 130 | 125 | 110 | 95 | 90 |
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
8.下列函数中,在其定义域内,既是奇函数又是减函数的是( )
| A. | f(x)=x3 | B. | f(x)=$\sqrt{-x}$ | C. | f(x)=2-x-2x | D. | f(x)=-lg|x| |