题目内容
函数f(x)在[0,+∞)上是单调递减函数,则f(1-x2)的单调增区间是 .
考点:复合函数的单调性
专题:函数的性质及应用
分析:根据复合函数单调性之间的关系即可得到结论.
解答:
解:∵f(x)在[0,+∞)上是单调递减函数,
∴要使f(1-x2)有意义,则1-x2≥0,解得-1≤x≤1.
设t=1-x2,-1≤x≤1,
则∵∴要求函数f(1-x2)的单调增区间,
则根据复合函数单调性之间的关系即求函数t=1-x2的递减区间,
∵函数t=1-x2的递减区间是[0,1],
∴f(1-x2)的单调增区间是[0,1],
故答案为:[0,1]
∴要使f(1-x2)有意义,则1-x2≥0,解得-1≤x≤1.
设t=1-x2,-1≤x≤1,
则∵∴要求函数f(1-x2)的单调增区间,
则根据复合函数单调性之间的关系即求函数t=1-x2的递减区间,
∵函数t=1-x2的递减区间是[0,1],
∴f(1-x2)的单调增区间是[0,1],
故答案为:[0,1]
点评:本题主要考查函数单调区间的求解,根据复合函数单调性之间的关系是解决本题的关键.
练习册系列答案
相关题目
已知a、b为互不相等的两个正数,下列四个数
,
,
,
中,最小的是( )
| 2 | ||||
|
| ab |
| a+b |
| 2 |
|
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
命题“如果数列{an}的前n项和Sn=2n2-3n,那么数列{an}一定是等差数列”是否成立( )
| A、不成立 | B、成立 |
| C、不能断定 | D、能断定 |