题目内容

16.设矩阵M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩阵M的逆矩阵M-1

分析 先求出MN=$[\begin{array}{l}{0}&{2}\\{2x-y}&{4x-y}\end{array}]$,由MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,列出方程组求出M=$[\begin{array}{l}{1}&{2}\\{4}&{3}\end{array}]$,由此能求出矩阵M的逆矩阵M-1

解答 解:∵M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,
∴MN=$[\begin{array}{l}{0}&{2}\\{2x-y}&{4x-y}\end{array}]$,
∵MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,∴$\left\{\begin{array}{l}{2x-y=5}\\{4x-y=13}\end{array}\right.$,
解得x=4,y=3,
∴M=$[\begin{array}{l}{1}&{2}\\{4}&{3}\end{array}]$,
∵(A|I)=$[\begin{array}{l}{1}&{2}&{\;}&{1}&{0}\\{4}&{3}&{\;}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{2}&{\;}&{1}&{0}\\{0}&{-5}&{\;}&{-4}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{\;}&{-\frac{3}{5}}&{\frac{2}{5}}\\{0}&{1}&{\;}&{\frac{4}{5}}&{-\frac{1}{5}}\end{array}]$.
∴矩阵M的逆矩阵M-1=$[\begin{array}{l}{-\frac{3}{5}}&{\frac{2}{5}}\\{\frac{4}{5}}&{-\frac{1}{5}}\end{array}]$.

点评 本题考查逆矩阵的求法,涉及到矩阵与矩阵相乘、矩阵变换等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网