题目内容
14.| A. | 3 | B. | 10 | C. | 25 | D. | 56 |
分析 根据已知中的程序框图可得,该程序的功能是计算并输出变量s的值,模拟程序的运行过程,可得答案.
解答 解:第一次执行循环体,输出a=3,则s=3,k=1,不满足退出循环的条件;
第二次执行循环体,输出a=4,则s=10,k=2,不满足退出循环的条件;
第三次执行循环体,输出a=5,则s=25,k=3,满足退出循环的条件;
故输出的s值为25,
故选:C
点评 本题考查的知识点是程序框图,当程序的运行次数不多或有规律时,可采用模拟运行的办法解答.
练习册系列答案
相关题目
12.命题“$?{x_0}∈R,{2^{x_0}}≤0$”的否定是( )
| A. | 不存在${x_0}∈R,{2^{x_0}}>0$ | B. | ?x∈R,2x>0 | ||
| C. | $?{x_0}∈R,{2^{x_0}}≥0$. | D. | ?x∈R,2x≤0 |
2.已知对数函数 f(x)=logax(a>0,且a≠1)在区间[2,4]上的最大值与最小值之积为2,则a=( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{2}$或 2 | C. | $2\sqrt{2}$ | D. | 2 |
9.
在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).
(1)求a的值,并计算所抽取样本的平均值$\overline x$(同一组中的数据用该组区间的中点值作代表);
(2)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”?
附表及公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
(1)求a的值,并计算所抽取样本的平均值$\overline x$(同一组中的数据用该组区间的中点值作代表);
(2)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”?
| 文科生 | 理科生 | 合计 | |
| 获奖 | 5 | ||
| 不获奖 | |||
| 合计 | 200 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
19.函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3xf(x)+x2f(x)<0,则不等式(x+2016)3f(x+2016)+27f(-3)>0的解集( )
| A. | (-2018,-2016) | B. | (-∞,-2016) | C. | (-2019,-2016) | D. | (-∞,-2019) |
6.
为调查运城市学生百米运动成绩,从该市学生中按照男女比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求这组数据的中位数(精确到0.1)
(Ⅱ)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如表:
根据表中所给的数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅰ)求这组数据的中位数(精确到0.1)
(Ⅱ)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如表:
| 性别 是否达标 | 男 | 女 | 合计 |
| 达标 | a=24 | b=6 | 30 |
| 不达标 | c=8 | d=12 | 20 |
| 合计 | 32 | 18 |
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥K) | 0.050 | 0.010 | 0.001 |
| K | 3.841 | 6.625 | 10.828 |
3.
已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )
| A. | $\frac{4}{3}$cm3 | B. | $\frac{8}{3}$cm3 | C. | 2cm3 | D. | 4cm3 |
4.已知圆C1:x2+y2=4和圆2:(x-a)2+y2=4,其中a是在区间(0,6)上任意取得一个实数,那么圆C1和圆C2相交且公共弦长小于2$\sqrt{3}$的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |