题目内容
14.若x,y满足不等式组$\left\{\begin{array}{l}{3x-y+3≥0}\\{x+2m≤0}\\{y-3m≥0}\end{array}\right.$,且z=2x-3y的最大值为13,则实数m=-1.分析 作出可行域,变形目标函数,平移直线可得z的最值,可得m的方程,解方程可得.
解答
解:作出不等式组$\left\{\begin{array}{l}{3x-y+3≥0}\\{x+2m≤0}\\{y-3m≥0}\end{array}\right.$所对应可行域,如图:
变形目标函数z=2x-3y可得y=$\frac{2}{3}$x-$\frac{1}{3}$z,平移直线y=$\frac{2}{3}$x可知:
当直线经过点A时,直线截距最小值,z取最大值,由$\left\{\begin{array}{l}{x+2m=0}\\{y-3m=0}\end{array}\right.$解得A(-2m,3m)
代值可得-4m-9m=13,解得m=-1,
给答案为:-1.
点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.
练习册系列答案
相关题目
5.下列函数中为奇函数的是( )
| A. | y=x+cosx | B. | y=x+sinx | C. | $y=\sqrt{x}$ | D. | y=e-|x| |
2.已知直线x+y=m(m>0)与圆x2+y2=1相交于P,Q两点,且∠POQ=120°(其中O为原点),那么m的值是( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
9.某单位附近只有甲,乙两个临时停车场,它们各有50个车位,为了方便市民停车,某互联网停车公司对这两个停车场在工作日某些固定时刻的剩余停车位进行记录,如下表:
如果表中某一时刻停车场剩余停车位数低于总车位数的10%,那么当车主驱车抵达单位附近时,该公司将会向车主发出停车场饱和警报.
(Ⅰ)假设某车主在以上六个时刻抵达单位附近的可能性相同,求他收到甲停车场饱和警报的概率;
(Ⅱ)从这六个时刻中任选一个时刻,求甲停车场比乙停车场剩余车位数少的概率;
(Ⅲ)当停车场乙发出饱和警报时,求停车场甲也发出饱和警报的概率.
| 时间 | 8点 | 10点 | 12点 | 14点 | 16点 | 18点 |
| 停车场甲 | 10 | 3 | 12 | 6 | 12 | 17 |
| 停车场乙 | 13 | 4 | 3 | 2 | 6 | 19 |
(Ⅰ)假设某车主在以上六个时刻抵达单位附近的可能性相同,求他收到甲停车场饱和警报的概率;
(Ⅱ)从这六个时刻中任选一个时刻,求甲停车场比乙停车场剩余车位数少的概率;
(Ⅲ)当停车场乙发出饱和警报时,求停车场甲也发出饱和警报的概率.
19.甘肃省瓜州县自古就以生产“美瓜”面名扬中外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%~19%,是消暑止渴的佳品,调查表明,蜜瓜的甜度与海拔高度,日照时长,温差有极强的相关性,分别用x,y,z表示蜜瓜甜度与海拔高度,日照时长,温差的相关程度,big对它们进行量化:0表示一般,1表示良,2表示优,在用综合指标w=x+y+z的值平定蜜瓜的顶级,若w≥4,则为一级;若2≤w≤3,则为二级;若0≤w≤1,则为三级,今年来,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:
(1)若有蜜瓜种植地110块,试估计等级为三家的蜜瓜种植地的数量;
(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.
| 种植地编号 | A | B | C | D | E |
| (x,y,z) | (1,0,0) | (2,2,1) | (0,1,1) | (2,0,2) | (1,1,1) |
| 种植地编号 | F | G | H | I | J |
| (x,y,z) | (1,1,2) | (2,2,2) | (0,0,1) | (2,2,1) | (0,2,1) |
(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.