ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖª´üÖÐ×°ÓдóСÏàͬµÄ2¸ö°×Çò£¬2¸öºìÇòºÍ1¸ö»ÆÇò£®Ò»ÏîÓÎÏ·¹æ¶¨£ºÃ¿¸ö°×Çò¡¢ºìÇòºÍ»ÆÇòµÄ·ÖÖµ·Ö±ðÊÇ0·Ö¡¢1·ÖºÍ2·Ö£¬Ã¿Ò»¾Ö´Ó´üÖÐÒ»´ÎÐÔÈ¡³öÈý¸öÇò£¬½«3¸öÇò¶ÔÓ¦µÄ·ÖÖµÏà¼Óºó³ÆÎª¸Ã¾ÖµÄµÃ·Ö£¬¼ÆËãÍêµÃ·Öºó½«Çò·Å»Ø´üÖУ®µ±³öÏÖµÚn¾ÖµÃn£¨n¡ÊN*£©·ÖµÄÇé¿ö¾ÍËãÓÎÏ·¹ý¹Ø£¬Í¬Ê±ÓÎÏ·½áÊø£¬ÈôËľֹýºóÈÔδ¹ý¹Ø£¬ÓÎÏ·Ò²½áÊø£®£¨1£©ÇóÔÚÒ»¾ÖÓÎÏ·ÖеÃ3·ÖµÄ¸ÅÂÊ£»
£¨2£©ÇóÓÎÏ·½áÊøÊ±¾ÖÊýXµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE£¨X£©£®
·ÖÎö £¨¢ñ£©¸ù¾ÝÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½Çó³ö¶ÔÓ¦µÄ¸ÅÂÊÖµ£»
£¨¢ò£©ÓÉÌâÒâÖªËæ»ú±äÁ¿XµÄ¿ÉÄÜȡֵ£¬¼ÆËãÔÚÒ»¾ÖÓÎÏ·ÖеÃ2·ÖµÄ¸ÅÂÊÖµ£¬
Çó³ö¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬Ð´³ö·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍû£®
½â´ð ½â£º£¨¢ñ£©ÉèÔÚÒ»¾ÖÓÎÏ·ÖеÃ3·ÖΪʼþA£¬
ÔòP£¨A£©=$\frac{{C}_{2}^{1}{•C}_{2}^{1}{•C}_{1}^{1}}{{C}_{5}^{3}}$=$\frac{2}{5}$£»
£¨¢ò£©ÓÉÌâÒâËæ»ú±äÁ¿XµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬4£»
ÇÒÔÚÒ»¾ÖÓÎÏ·ÖеÃ2·ÖµÄ¸ÅÂÊΪ$\frac{{C}_{2}^{1}{•C}_{2}^{2}{+C}_{2}^{2}{•C}_{1}^{1}}{{C}_{5}^{3}}$=$\frac{3}{10}$£»
ÔòP£¨X=1£©=$\frac{{C}_{2}^{2}{•C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{1}{5}$£¬
P£¨X=2£©=$\frac{4}{5}$¡Á$\frac{3}{10}$=$\frac{6}{25}$£¬
P£¨X=3£©=$\frac{4}{5}$¡Á£¨1-$\frac{3}{10}$£©¡Á$\frac{2}{5}$=$\frac{28}{125}$£¬
P£¨X=4£©=$\frac{4}{5}$¡Á£¨1-$\frac{3}{10}$£©¡Á$\frac{3}{5}$=$\frac{42}{125}$£¬
¡àXµÄ·Ö²¼ÁÐΪ£º
| X | 1 | 2 | 3 | 4 |
| P | $\frac{1}{5}$ | $\frac{6}{25}$ | $\frac{28}{125}$ | $\frac{42}{125}$ |
µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ê¼þ¸ÅÂÊÒÔ¼°ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄ¼ÆËãÎÊÌ⣬ÊÇÖеµÌ⣮
| A£® | A=B | B£® | B?A | C£® | A?B | D£® | A¡ÉB=∅ |