题目内容

6.已知函数f(x)=1nx+2x-6的零点在区间($\frac{k}{2}$,$\frac{k+1}{2}$)(k∈Z)内,那么k=5.

分析 函数f(x)=lnx+2x-6在其定义域上连续单调递增,从而利用函数的零点的判定定理求解即可.

解答 解:函数f(x)=lnx+2x-6在其定义域(0,+∞)上连续单调递增,
f(1)=ln1+2-6=-4<0
f(2)=ln2+4-6=ln2-2<0,
f(3)=ln3+6-6=ln3>0;
∴根据零点存在定理,?x0∈(2,3),使得f(x0)=0.
∵f($\frac{5}{2}$)=ln$\frac{5}{2}$-1=ln$\frac{5}{2}$-lne<0
∴x0∈($\frac{5}{2}$,3)
∴$\frac{k}{2}$=$\frac{5}{2}$即k=5
故答案为:5.

点评 本题考查了函数的零点的判定定理的应用.注意函数的单调性以及函数的连续性的判断.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网