题目内容

已知函数f(x)=
1
3
x3+x2+(2a-1)x+a2-a+1若函数f(x)在(1,3]上存在唯一的极值点.则实数a的取值范围为
 
考点:利用导数研究函数的极值
专题:计算题,导数的综合应用
分析:求出函数的导数,由已知条件结合零点存在定理,可得f′(1)•f′(3)<0或f′(3)=0,解出不等式求并集即可.
解答: 解:∵f(x)=
1
3
x3+x2+(2a-1)x+a2-a+1,
∴f′(x)=x2+2x+2a-1,
∵函数f(x)在(1,3]上存在唯一的极值点,
∴f′(1)•f′(3)<0或f′(3)=0,
∴(1+2+2a-1)(9+6+2a-1)<0或9+6+2a-1=0,
即有(a+1)(a+7)<0或a=-7
解得-7≤a<-1.
故答案为:[-7,-1).
点评:本题考查导数的运用:求函数的极值,考查函数的零点存在定理,注意导数为0与函数的极值的关系,属于易错题,也是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网