题目内容

已知函数f(x)=x3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是f(x)的导函数.若对满足-1≤a≤1的一切a的值,都有g(x)<0,则实数x的取值范围是
 
考点:导数的运算
专题:导数的概念及应用
分析:将g(x)=3x2-ax+3a-5<0对满足-1≤a≤1的一切a的值成立,转化为令(3-x)a+3x2-5<0,-1≤a≤1成立解决.
解答: 解:由题意g(x)=3x2-ax+3a-5
令φ(x)=(3-x)a+3x2-5,-1≤a≤1
对-1≤a≤1,恒有g(x)<0,即φ(a)<0
φ(1)<0
φ(-1)<0
3x2-x-2<0
3x2+x-8<0

解得-
2
3
<x<1
故实数x的取值范围是(-
2
3
,1)

故答案为:(-
2
3
,1)
点评:本题主要考查函数的单调性、导数的应用、解不等式等基础知识,以及推理能力、运算能力和综合应用数学知识的能力
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网