题目内容

已知函数f(x)=Asin(
x
2
+φ)( A>0,0<φ<π)的最大值是2,且f(0)=2.
(1)求φ的值;
(2)设α,β∈[0,
π
2
],f(2α)=
6
5
,f(2β+π)=-
10
13
,求sin(α+β)的值.
考点:正弦函数的图象,两角和与差的正弦函数,函数y=Asin(ωx+φ)的图象变换
专题:计算题,三角函数的求值
分析:(1)由函数f(x)的最大值是2,A>0可求得A=2,由f(0)=2及0<φ<π即可求得φ的值;
(2)先求得f(x)的解析式,由已知即可求得cosα=
3
5
sinβ=
5
13
,从而可得sinα,cosβ,即可由两角和的正弦公式求sin(α+β)的值.
解答: 解:(1)∵函数f(x)的最大值是2,A>0
∴A=2…(2分)
∵f(0)=2sinφ=2
∴sinφ=1…(3分)
又∵0<φ<π
φ=
π
2
…(4分)
(2)由(1)可知f(x)=2sin(
x
2
+
π
2
)=2cos
x
2
…(6分)
f(2α)=2cosα=
6
5

cosα=
3
5
…(7分)
f(2β+π)=2cos(β+
π
2
)=-2sinβ=-
10
13

sinβ=
5
13
…(8分)
∵α,β∈[0,
π
2
]

sinα=
1-cos2α
=
1-(
3
5
)
2
=
4
5
cosβ=
1-sin2β
=
1-(
5
13
)
2
=
12
13
…(10分)
∴sin(α+β)=sinαcosβ+cosαsinβ…(11分)=
4
5
×
12
13
+
3
5
×
5
13
=
63
65
…(12分)
点评:本题考查了两角和与差的正弦函数公式的应用,正弦函数的图象和性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网