ÌâÄ¿ÄÚÈÝ

£¨Àí£©ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬¶ÔÈÎÒâʵÊýx1£¬x2¶¼ÓÐf£¨x1+x2£©=1+f£¨x1£©+f£¨x2£©£¬ÇÒf£¨1£©=1£®
£¨1£©Èô¶ÔÈÎÒâÕýÕûÊýn£¬ÓÐan=f£¨
1
2n
£©+1£¬Çóa1¡¢a2µÄÖµ£¬²¢Ö¤Ã÷{an}ΪµÈ±ÈÊýÁУ»
£¨2£©Éè¶ÔÈÎÒâÕýÕûÊýn£¬ÓÐbn=
1
f(n)
£¬Èô²»µÈʽbn+1+bn+2+¡­+b2n£¾
6
35
log2£¨x+1£©¶ÔÈÎÒⲻСÓÚ2µÄÕýÕûÊýn¶¼³ÉÁ¢£¬ÇóʵÊýxµÄȡֵ·¶Î§£®
¿¼µã£º³éÏóº¯Êý¼°ÆäÓ¦ÓÃ,ÊýÁеÄÇóºÍ
רÌ⣺µãÁС¢µÝ¹éÊýÁÐÓëÊýѧ¹éÄÉ·¨
·ÖÎö£º£¨1£©ÀûÓø³Öµ·¨£¬½áºÏµÈ±ÈÊýÁе͍Òå¼´¿ÉÖ¤Ã÷{an}ΪµÈ±ÈÊýÁУ»
£¨2£©Çó³öbnµÄ±í´ïʽ£¬ÀûÓÃÊýÁеĵ¥µ÷ÐÔ£¬¼´¿ÉÇó³öxµÄȡֵ·¶Î§£®
½â´ð£º ½â£º£¨1£©Áîx1=x2=
1
2
£¬µÃf(1)=1+f(
1
2
)+f(
1
2
)
£¬
Ôòf(
1
2
)=0
£¬a1=f(
1
2
)+1=1
¡­1·Ö
Áîx1=x2=
1
4
£¬µÃf(
1
2
)=1+f(
1
4
)+f(
1
4
)
£¬
Ôòf(
1
4
)=-
1
2
£¬a2=f(
1
4
)+1=
1
2
¡­2·Ö
Áîx1=x2=
1
2n+1
£¬µÃf(
1
2n+1
+
1
2n+1
)=1+f(
1
2n+1
)+f(
1
2n+1
)
£¬
¼´f(
1
2n
)=1+2f(
1
2n+1
)
£¬¡­4·Ö
Ôòf(
1
2n
)+1=2[1+f(
1
2n+1
)]
£¬an=2an+1
ËùÒÔ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬¹«±Èq=
1
2
£¬Ê×Ïîa1=1£®¡­6·Ö
£¨2£©Áîx1=n£¬x2=1£¬µÃf£¨n+1£©=1+f£¨1£©+f£¨n£©£¬¼´f£¨n+1£©=f£¨n£©+2
Ôò{f£¨n£©}ÊǵȲîÊýÁУ¬¹«²îΪ2£¬Ê×Ïîf£¨1£©=1£¬
¹Êf£¨n£©=1+£¨n-1£©•2=2n-1£¬¡­8·Ö
bn=
1
f(n)
=
1
2n-1
£®¡­9·Ö
Éèg(n)=bn+1+bn+2+¡­+b2n=
1
2n+1
+
1
2n+3
+¡­+
1
4n-1
£¬
Ôòg(n+1)-g(n)=
1
4n+1
+
1
4n+3
-
1
2n+1
=
1
(4n+1)(4n+3)(2n+1)
£¾0
£¬
ËùÒÔ{g£¨n£©}ÊǵÝÔöÊýÁУ¬gmin=g(2)=
1
5
+
1
7
=
12
35
£¬¡­11·Ö
´Ó¶ø
6
35
log2(x+1)£¼
12
35
£¬¼´log2£¨x+1£©£¼2¡­12·Ö
Ôò
x+1£¾0
x+1£¼4
£¬½âµÃx¡Ê£¨-1£¬3£©£® ¡­14·Ö£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÈ±ÈÊýÁе͍ÒåºÍÓ¦Óã¬×ۺϿ¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÔËËãÁ¿½Ï´ó£¬ÄѶȲ»Ð¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø