题目内容
对任意实数列A={a1,a2,a3…},定义△A={a2-a1,a3-a2,a4-a3,…},它的第n项为an+1-an(n∈N+),假设△A是首项是a公比为q的等比数列.
(Ⅰ)求数列△(△A)的前n项和Tn;
(Ⅱ)若a1=1,a=2,q=2.
①求实数列A={a1,a2,a3…}的通项an;
②证明:
-
<
+
+
+…+
<
.
(Ⅰ)求数列△(△A)的前n项和Tn;
(Ⅱ)若a1=1,a=2,q=2.
①求实数列A={a1,a2,a3…}的通项an;
②证明:
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| a3 |
| a4 |
| an |
| an+1 |
| n |
| 2 |
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)已知条件得△A={b1,b1q,b1q2…},△(△A)={b1(q-1),b1q(q-1),b1q2(q-1)…},由此能求出Tn=a(qn-1),n∈N+.
(Ⅱ)①由题设bn=2n,由an+1-an=bn,(n∈N+),叠加得an=2n-1(n∈N+).
②由已条件推导出
<
,且
>
-
,由此能够证明
-
<
+
+
+…+
<
.
(Ⅱ)①由题设bn=2n,由an+1-an=bn,(n∈N+),叠加得an=2n-1(n∈N+).
②由已条件推导出
| ak |
| ak+1 |
| 1 |
| 2 |
| ak |
| ak+1 |
| 1 |
| 2 |
| 1 |
| 3•2k |
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| a3 |
| a4 |
| an |
| an+1 |
| n |
| 2 |
解答:
(Ⅰ)解:令△A={b1,b2,b3…},
这里bn=an+1-an,(n∈N+),
∵△A是公比为q的等比数列.∴△A={b1,b1q,b1q2…},
∴△(△A)={b1(q-1),b1q(q-1),b1q2(q-1)…},
当q=1时,△(△A)={0,0,0…},∴Tn=0.---(2分)
当q≠1时,△(△A)是公比为q,首项为b1=(q-1)的等比数列.Tn=
=-b1(1-qn)=a(qn-1).---(4分)
综上Tn=a(qn-1),n∈N+.---(6分)
(Ⅱ)①解:由题设a=2,q=2,∴bn=2n,
∵an+1-an=bn,(n∈N+),叠加,得an=2n-1(n∈N+).---(8分)
②证明:∵
=
=
<
=
∴
+
+
+…+
<
+
+
+…+
=
.---(10分)
又∵
=
=
=
-
=
-
k∈N+,
2k≥2,2k-2≥0,3•2k+2k-2≥3•2k,
即4•2k-2≥3•2k,∴2•(2K+1-1)≥3•2k,
∴-
≥-
,
∴
=
-
≥
-
.---(12分)
∴
+
+
+…+
≥
-
(
+
…+
)>
-
(1-
)>
-
即
-
<
+
+
+…+
<
.---(13分)
这里bn=an+1-an,(n∈N+),
∵△A是公比为q的等比数列.∴△A={b1,b1q,b1q2…},
∴△(△A)={b1(q-1),b1q(q-1),b1q2(q-1)…},
当q=1时,△(△A)={0,0,0…},∴Tn=0.---(2分)
当q≠1时,△(△A)是公比为q,首项为b1=(q-1)的等比数列.Tn=
| b1(q-1)(1-qn) |
| 1-q |
综上Tn=a(qn-1),n∈N+.---(6分)
(Ⅱ)①解:由题设a=2,q=2,∴bn=2n,
∵an+1-an=bn,(n∈N+),叠加,得an=2n-1(n∈N+).---(8分)
②证明:∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 2k-1 |
| 2(2k-1) |
| 1 |
| 2 |
| a1 |
| a2 |
| a2 |
| a3 |
| a3 |
| a4 |
| an |
| an+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
又∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
(2k-
| ||||
2(2k-
|
| 1 |
| 2 |
| 1 | ||
22(2k-
|
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
2k≥2,2k-2≥0,3•2k+2k-2≥3•2k,
即4•2k-2≥3•2k,∴2•(2K+1-1)≥3•2k,
∴-
| 1 |
| 2•(2K+1-1) |
| 1 |
| 3•2k |
∴
| ak |
| ak+1 |
| 1 |
| 2 |
| 1 |
| 2•(2k+1-1) |
| 1 |
| 2 |
| 1 |
| 3•2k |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| a3 |
| a4 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
即
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| a3 |
| a4 |
| an |
| an+1 |
| n |
| 2 |
点评:本题考查数列的前n项和的求法,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目
已知数列
,
,
,
,…,那么0.98,0.96,0.94中属于该数列中某一项值的应当有( )
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| 4 |
| 5 |
| A、0个 | B、1个 | C、2个 | D、3个 |