题目内容
5.设 $f(x)=\left\{\begin{array}{l}x-2\\ f[{f(x+6)}]\end{array}\right.\begin{array}{l}({x≥10})\\({x<10})\end{array}$,则f(5)的值为11.分析 利用函数的解析式,直接求解即可.
解答 解:$f(x)=\left\{\begin{array}{l}x-2\\ f[{f(x+6)}]\end{array}\right.\begin{array}{l}({x≥10})\\({x<10})\end{array}$,
则f(5)=f(f(11))=f(9)=f[f(14)]=f(13)=13-2=11.
故答案为:11.
点评 本题考查抽象函数的应用,正确利用分段函数的表达式是解题的关键.
练习册系列答案
相关题目
14.过点$P(-\sqrt{3},0)$作直线l与圆O:x2+y2=1交于A、B两点,O为坐标原点,设∠AOB=θ,且$θ∈(0,\frac{π}{2})$,当△AOB的面积为$\frac{{\sqrt{3}}}{4}$时,直线l的斜率为( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $±\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $±\sqrt{3}$ |