题目内容
9.阅读程序框图(如图),如果输出的函数值在[1,3]上,则输入的实数x取值范围是( )| A. | [0,log23] | B. | [-2,2] | C. | [0,log23]∪{2} | D. | [-2,log23]∪{2} |
分析 模拟程序框图的运行过程,得出该程序运行输出的是什么,由此得出解答来.
解答 解:根据题意,得
当x∈(-2,2)时,f(x)=2x,
∴1≤2x≤3,
∴0≤x≤log23;
当x∉(-2,2)时,f(x)=x+1,
∴1≤x+1≤3,
∴0≤x≤2,
∴x的取值范围是[0,log23]∪{2}.
故选:C.
点评 本题考查了程序框图的应用问题,也考查了分段函数的应用问题,解题时应模拟程序框图的运行过程,以便正确解答问题,是基础题.
练习册系列答案
相关题目
4.一个几何体的正视图,侧视图为边长为2的正方形,其全面积为( )

| A. | 6π | B. | $8\sqrt{2}$π | C. | $4+4\sqrt{2}$π | D. | $8+4\sqrt{2}$π |
14.已知复数z在复平面内对应的点为(-1,1),则复数$\frac{z+3}{z+2}$的模为( )
| A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
1.近年来,某地区为促进本地区发展,通过不断整合地区资源、优化投资环境、提供投资政策扶持等措施,吸引外来投资,效果明显.该地区引进外来资金情况如表:
(Ⅰ)求y关于t的回归直线方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$;
(Ⅱ)根据所求回归直线方程预测该地区2017年(t=6)引进外来资金情况.
参考公式:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$t.
| 年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| 外来资金y(百亿元) | 5 | 6 | 7 | 8 | 10 |
(Ⅱ)根据所求回归直线方程预测该地区2017年(t=6)引进外来资金情况.
参考公式:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$t.
19.设锐角△ABC的三个内角A,B,C的对边分别为a,b,c成等比数列,且sinAsinC=$\frac{3}{4}$,则角B=( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{2π}{3}$ |