题目内容
6.复数$z=\frac{2+4i}{1+i}$(i为虚数单位)在复平面内对应点的坐标是( )| A. | (3,1) | B. | (-1,3) | C. | (3,-1) | D. | (2,4) |
分析 利用复数的运算法则、几何意义即可得出.
解答 解:$z=\frac{(2+4i)(1-i)}{(1+i)(1-i)}=3+i$,
∴复数z所对应点的坐标是(3,1).
故选:A.
点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
17.
甲、乙两位同学期末考试的语文、数学、英语、物理成绩如茎叶图所示,其中甲的一个数据记录模糊,无法辨认,用a来表示,已知两位同学期末考试四科的总分恰好相同,则甲同学四科成绩的中位数为( )
| A. | 92 | B. | 92.5 | C. | 93 | D. | 93.5 |
1.一超市在销售一批大小相近的某时令水果时,由于存放的时间对口味影响较大,超市根据调研决定最多销售5天,第6天就会扎成果汁.进价2元一个,售价10元一个,每天的仓储保管费平均为每个水果每天0.5元,(第一天售出的水果,算一天仓储保管费,第二天售出的水果,算两天仓储保管费,以此类推)一个水果榨成果汁后能卖2元且能很快售完,果汁不计仓储保管成本.按以下规则定价:
从该批水果中随机抽取100个贴上标记,根据这100个水果的销售情况得到如下数据:
(1)①估计一个水果至多两天(包括两天)销售出去的概率;
②若一个水果在第二天售出,求这个水果产生的利润.
(2)以事件发生的频率作为相应的概率,在这批水果的销售活动中,设一个水果产生的利润为X元,求X的分布列和数学期望E(X)
| 售出时间 | 第一天 | 第二天 | 第三天 | 第四天 | 第五天 |
| 售出时折扣 | 原价 | 9折 | 8折 | 7折 | 5折 |
| 售出的时间 | 第一天 | 第二天 | 第三天 | 第四天 | 第五天 |
| 售出的个数 | 40 | 25 | 15 | 5 | 10 |
②若一个水果在第二天售出,求这个水果产生的利润.
(2)以事件发生的频率作为相应的概率,在这批水果的销售活动中,设一个水果产生的利润为X元,求X的分布列和数学期望E(X)