题目内容

4.等差数列{an}的前n项和为Sn,a22-3a7=2,且$\frac{1}{a_2}$,$\sqrt{{S_2}-3}$,S3成等比数列,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=$\frac{2}{{{a_n}{a_{n+2}}}}$,数列{bn}的前n项和为Tn,若对于任意的n∈N*,都有8Tn<2λ2+5λ成立,求实
数λ的取值范围.

分析 (I)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;
(II)利用“裂项求和”方法、数列的单调性即可得出.

解答 解:(Ⅰ)设等差数列{an}的公差为d
由$\left\{{\begin{array}{l}{{a_{22}}-3{a_7}=2}\\{{{(\sqrt{{S_2}-3})}^2}=\frac{1}{a_2}•{S_3}}\end{array}}\right.$$⇒\left\{{\begin{array}{l}{({a_1}+21d)-3({a_1}+6d)=2}\\{(2{a_1}+d-3)•({a_1}+d)=3{a_1}+3d}\end{array}}\right.$,
即$\left\{{\begin{array}{l}{-2{a_1}+3d=2}\\{({a_1}+d)(2{a_1}+d-6)=0}\end{array}}\right.$,
解得:$\left\{{\begin{array}{l}{{a_1}=2}\\{d=2}\end{array}}\right.$,或 $\left\{{\begin{array}{l}{{a_1}=-\frac{2}{5}}\\{d=\frac{2}{5}}\end{array}}\right.$,
当${a_1}=-\frac{2}{5}$,$d=\frac{2}{5}$时,$\sqrt{{S_2}-3}=\sqrt{-\frac{17}{5}}$没有意义,
∴a1=2,d=2,此时an=2+2(n-1)=2n.
(Ⅱ)${b_n}=\frac{2}{{{a_n}{a_{n+2}}}}=\frac{1}{2n(n+2)}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2})$,
Tn=b1+b2+b3+…+bn=$\frac{1}{4}(\frac{1}{1}-\frac{1}{3})+\frac{1}{4}(\frac{1}{2}-\frac{1}{4})+\frac{1}{4}(\frac{1}{3}-\frac{1}{5})+\frac{1}{4}(\frac{1}{4}-\frac{1}{6})+\frac{1}{4}(\frac{1}{5}-\frac{1}{7})+\frac{1}{4}(\frac{1}{6}-\frac{1}{8})$$+…+\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n+1})+\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2})$=$\frac{1}{4}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})=\frac{3}{8}-\frac{1}{4}(\frac{1}{n+1}+\frac{1}{n+2})$,
∴$8{T_n}=3-2(\frac{1}{n+1}+\frac{1}{n+2})<3$,
为满足题意,必须2λ2+5λ≥3,∴$λ≥\frac{1}{2}$或λ≤-3.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网