题目内容

9.已知f(x)=2sin2xcosφ+2cos2xsinφ+m(0<φ<$\frac{π}{2}$),且f(x)的图象上的一个最低点为M($\frac{2}{3}π$,-1).
(1)求f(x)的解析式;
(2)已知f($\frac{α}{2}}$)=$\frac{1}{3}$,α∈[0,π],求cosα的值.

分析 (1)利用三角恒等变换化简函数的解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)先利用条件求得sin(α+$\frac{π}{6}$)的值,利用同角三角的基本关系求得cos(α+$\frac{π}{6}$)的值,再根据 cosα=cos[(α+$\frac{π}{6}$)-$\frac{π}{6}$],利用两角差的余弦公式计算求得结果.

解答 解:(1)∵f(x)=2sin2xcosφ+2cos2xsinφ+m=2sin(2x+φ)+m,
f(x)的图象上的一个最低点为M($\frac{2}{3}π$,-1),∴-2+m=-1,∴m=1,f(x)=2sin(2x+φ)+1.
再根据五点法作图可得2•$\frac{2π}{3}$+φ=$\frac{3π}{2}$,求得φ=$\frac{π}{6}$,∴f(x)=2sin(2x+$\frac{π}{6}$)+1.
(2)∵f($\frac{α}{2}}$)=2sin(α+$\frac{π}{6}$)+1=$\frac{1}{3}$,∴sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,
∵α∈[0,π],∴α+$\frac{π}{6}$ 为第三象限角,∴cos(α+$\frac{π}{6}$)=-$\sqrt{{1-sin}^{2}(α+\frac{π}{6})}$=-$\frac{2\sqrt{2}}{3}$,
∴cosα=cos[(α+$\frac{π}{6}$)-$\frac{π}{6}$]=cos(α+$\frac{π}{6}$)cos$\frac{π}{6}$+sin(α+$\frac{π}{6}$)sin$\frac{π}{6}$=-$\frac{2\sqrt{2}}{3}•\frac{\sqrt{3}}{2}$-$\frac{1}{3}•\frac{1}{2}$=-$\frac{1+2\sqrt{6}}{6}$.

点评 本题主要考查三角恒等变换、由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网