题目内容
12.设集合M={x|$\frac{1+x}{3-x}$≥0},N={x|2x≥1},则M∩N=[0,3).分析 分别求出M与N中不等式的解集确定出M与N,找出两集合的交集即可.
解答 解:由M中不等式变形得:(x-3)(x+1)≤0,且3-x≠0,
解得:-1≤x<3,即M=[-1,3),
由N中不等式变形得:2x≥1=20,即x≥0,
∴N=[0,+∞),
则M∩N=[0,3),
故答案为:[0,3).
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
2.已知向量$\overrightarrow{OA}$=(cosβ,sinβ),将向量$\overrightarrow{OA}$绕坐标原点O逆时针旋转θ角得到向量$\overrightarrow{OB}$(0<θ<90°),则下列说法不正确的是( )
| A. | |$\overrightarrow{OA}$|+|$\overrightarrow{OB}$|>|$\overrightarrow{OA}$-$\overrightarrow{OB}$| | B. | |$\overrightarrow{AB}$|<$\sqrt{2}$ | C. | |$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$| | D. | ($\overrightarrow{OA}$+$\overrightarrow{OB}$)⊥($\overrightarrow{OA}$-$\overrightarrow{OB}$) |
3.将函数f(x)=2sinx+cosx的图象向右平移φ(φ∈(0,π))个单位后,所得图象是一个偶函数的图象,则tanφ的值是( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | -2 | D. | 2 |
20.某设备在正常运行时,产品的质量m~N(μ,σ2),其中μ=500g,σ2=1,为了检验设备是否正常运行,质量检查员需要随机的抽取产品,测其质量.
(1)当质量检查员随机抽检时,测得一件产品的质量为504g,他立即要求停止生产,检查设备,请你根据所学知识,判断该质量检查员的决定是否有道理,并说明你判断的依据.
进而,请你揭密质量检查员做出“要求停止生产,检查设备”的决定时他参照的质量参数标准:
(2)请你根据以下数据,判断优质品与其生产季节有关吗?
(3)该质量检查员从其住宅小区到公司上班的途中要经过6个红绿灯的十字路口,假设他在每个十字路口遇到红灯或绿灯是互相对立的,并且概率均为$\frac{1}{3}$,求该质量检查员在上班途中遇到红灯的期望和方差.
参考数据:
若X~N(μ,σ2),则P((μ-σ<X<μ+σ)≈0.683,
P((μ-2σ<X<μ+2σ)≈0.954,
P((μ-3σ<X<μ+3σ)≈0.997,
X2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(1)当质量检查员随机抽检时,测得一件产品的质量为504g,他立即要求停止生产,检查设备,请你根据所学知识,判断该质量检查员的决定是否有道理,并说明你判断的依据.
进而,请你揭密质量检查员做出“要求停止生产,检查设备”的决定时他参照的质量参数标准:
(2)请你根据以下数据,判断优质品与其生产季节有关吗?
| 品质 季节 | 优质品数量 | 合格品数量 |
| 夏秋季生产 | 26 | 8 |
| 春冬季生产 | 12 | 4 |
| B1 | B2 | |
| A1 | a | b |
| A2 | c | d |
若X~N(μ,σ2),则P((μ-σ<X<μ+σ)≈0.683,
P((μ-2σ<X<μ+2σ)≈0.954,
P((μ-3σ<X<μ+3σ)≈0.997,
X2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| p(x2≥k0) | 0.100 | 0.050 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |