ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖªÊýÁÐ{an}£¬{bn}¶¼Êǵ¥µ÷µÝÔöÊýÁУ¬Èô½«ÕâÁ½¸öÊýÁеÄÏî°´ÓÉСµ½´óµÄ˳ÐòÅųÉÒ»ÁУ¨ÏàͬµÄÏîÊÓΪһÏ£¬ÔòµÃµ½Ò»¸öÐÂÊýÁÐ{cn}£®£¨1£©ÉèÊýÁÐ{an}£¬{bn}·Ö±ðΪµÈ²î¡¢µÈ±ÈÊýÁУ¬Èôa1=b1=1£¬a2=b3£¬a6=b5£¬Çóc20£»
£¨2£©Éè{an}µÄÊ×ÏîΪ1£¬¸÷ÏîΪÕýÕûÊý£¬bn=3n£¬ÈôÐÂÊýÁÐ{cn}ÊǵȲîÊýÁУ¬ÇóÊýÁÐ{cn} µÄǰnÏîºÍSn£»
£¨3£©Éèbn=qn-1£¨qÊDz»Ð¡ÓÚ2µÄÕýÕûÊý£©£¬c1=b1£¬ÊÇ·ñ´æÔڵȲîÊýÁÐ{an}£¬Ê¹µÃ¶ÔÈÎÒâµÄn¡ÊN*£¬ÔÚbnÓëbn+1Ö®¼äÊýÁÐ{an}µÄÏîÊý×ÜÊÇbn£¿Èô´æÔÚ£¬Çë¸ø³öÒ»¸öÂú×ãÌâÒâµÄµÈ²îÊýÁÐ{an}£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÓÉÌâÒâµÃ£¬$\left\{\begin{array}{l}{1+d={q}^{2}}\\{1+5d={q}^{4}}\end{array}\right.$£¬½âµÃd=0»ò3£¬ÒòÊýÁÐ{an}£¬{bn}µ¥µ÷µÝÔö£¬d£¾0£¬q£¾1£¬¿ÉµÃan=3n-2£¬bn=2n-1£¬ÀûÓÃͨÏʽ¼´¿ÉµÃ³ö£®
£¨2£©ÉèµÈ²îÊýÁÐ{cn}µÄ¹«²îΪd£¬ÓÖa1£¬ÇÒbn=3n£¬ËùÒÔc1=1£¬ËùÒÔcn=dn+1-d£®ÒòΪb1=3ÊÇ{cn}ÖеÄÏËùÒÔÉèb1=cn£¬¼´d£¨n-1£©=2£®µ±n¡Ý4ʱ£¬½âµÃd=$\frac{2}{n-1}$£¼1£¬²»Âú×ã¸÷ÏîΪÕýÕûÊýµ±b1=c3=3ʱ£¬µ±b1=c2=3ʱ£¬¼´¿ÉµÃ³ö£®
£¨3£©´æÔڵȲîÊýÁÐ{an}£¬Ö»ÐèÊ×Ïîa1¡Ê£¨1£¬q£©£¬¹«²îd=q-1£®ÏÂÖ¤bnÓëbn+1Ö®¼äÊýÁÐ{an}µÄÏîÊýΪbn£®¼´Ö¤¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐ$\left\{\begin{array}{l}{{b}_{n}£¼{a}_{{b}_{1}+{b}_{2}+¡+{b}_{n-1}+1}}\\{{b}_{n+1}£¾{a}_{{b}_{1}+{b}_{2}+¡+{b}_{n}}}\end{array}\right.$£¬×÷²îÀûÓÃͨÏʽ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬
ÓÉÌâÒâµÃ£¬$\left\{\begin{array}{l}{1+d={q}^{2}}\\{1+5d={q}^{4}}\end{array}\right.$£¬½âµÃd=0»ò3£¬ÒòÊýÁÐ{an}£¬{bn}µ¥µ÷µÝÔö£¬
ËùÒÔd£¾0£¬q£¾1£¬
ËùÒÔd=3£¬q=2£¬
ËùÒÔan=3n-2£¬bn=2n-1£®¡£¨2·Ö£©
ÒòΪa1=b1=1£¬a2=b3£¬a6=b5£¬b7£¾a20£®
¡àc20=a17=49£®¡£¨4·Ö£©
£¨2£©ÉèµÈ²îÊýÁÐ{cn}µÄ¹«²îΪd£¬ÓÖa1£¬ÇÒbn=3n£¬
ËùÒÔc1=1£¬ËùÒÔcn=dn+1-d£®
ÒòΪb1=3ÊÇ{cn}ÖеÄÏËùÒÔÉèb1=cn£¬¼´d£¨n-1£©=2£®
µ±n¡Ý4ʱ£¬½âµÃd=$\frac{2}{n-1}$£¼1£¬²»Âú×ã¸÷ÏîΪÕýÕûÊý£»¡£¨6·Ö£©
µ±b1=c3=3ʱ£¬d=1£¬´Ëʱcn=n£¬Ö»ÐèÈ¡an=n£¬¶øµÈ±ÈÊýÁÐ{bn}µÄÏî¶¼ÊǵȲîÊýÁÐ{an}£¬ÖеÄÏËùÒÔSn=$\frac{n£¨n+1£©}{2}$£»¡£¨8·Ö£©
µ±b1=c2=3ʱ£¬d=2£¬´Ëʱcn=2n-1£¬Ö»ÐèÈ¡an=2n-1£¬
ÓÉ3n=2m-1£¬µÃm=$\frac{{3}^{n}+1}{2}$£¬3nÊÇÆæÊý£¬3n+1 ÊÇÕýżÊý£¬mÓÐÕýÕûÊý½â£¬
ËùÒԵȱÈÊýÁÐ{bn}µÄÏî¶¼ÊǵȲîÊýÁÐ{an}ÖеÄÏËùÒÔSn=n2£®¡£¨10·Ö£©
×ÛÉÏËùÊö£¬ÊýÁÐ{cn}µÄǰnÏîºÍSn=$\frac{n£¨n+1£©}{2}$£¬»òSn=n2£®¡£¨11·Ö£©
£¨3£©´æÔڵȲîÊýÁÐ{an}£¬Ö»ÐèÊ×Ïîa1¡Ê£¨1£¬q£©£¬¹«²îd=q-1¡£¨13·Ö£©
ÏÂÖ¤bnÓëbn+1Ö®¼äÊýÁÐ{an}µÄÏîÊýΪbn£®¼´Ö¤¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐ$\left\{\begin{array}{l}{{b}_{n}£¼{a}_{{b}_{1}+{b}_{2}+¡+{b}_{n-1}+1}}\\{{b}_{n+1}£¾{a}_{{b}_{1}+{b}_{2}+¡+{b}_{n}}}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{{b}_{n}£¼{a}_{1+q+¡+{q}^{n-2}+1}}\\{{b}_{n+1}£¾{a}_{1+q+¡+{q}^{n-1}}}\end{array}\right.$³ÉÁ¢£®
ÓÉbn-${a}_{1+q+¡+{q}^{n-2}+1}$=qn-1-a1-£¨1+q+¡+qn-2£©£¨q-1£©=1-a1£¼0£¬
bn+1-${a}_{1+q+¡+{q}^{n-1}}$=qn-a1-£¨1+q+¡+qn-1-1£©£¨q-1£©=q-a1£¾0£®£®
ËùÒÔÊ×Ïîa1¡Ê£¨1£¬q£©£¬¹«²îd=q-1µÄµÈ²îÊýÁÐ{an}·ûºÏÌâÒâ¡£¨16·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽÇóºÍ¹«Ê½¼°ÆäÐÔÖÊ¡¢·ÖÀàÌÖÂÛ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Ó¡Ë¢²áÊýx£¨Ç§²á£© | 2 | 3 | 4 | 5 | 8 |
| µ¥²á³É±¾y£¨Ôª£© | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
£¨¢ñ£©ÎªÁËÆÀ¼ÛÁ½ÖÖÄ£Ð͵ÄÄâºÏЧ¹û£¬Íê³ÉÒÔÏÂÈÎÎñ£®
£¨i£©Íê³ÉÏÂ±í£¨¼ÆËã½á¹û¾«È·µ½0.1£©£»
| Ó¡Ë¢²áÊýx£¨Ç§²á£© | 2 | 3 | 4 | 5 | 8 | |
| µ¥²á³É±¾y£¨Ôª£© | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
Ä£ÐÍ¼× | ¹À¼ÆÖµ$\widehat{{y}_{i}}$£¨1£© | 2.4 | 2.1 | 1.6 | ||
| ²ÐÖµ$\widehat{{e}_{i}}$£¨1£© | 0 | -0.1 | 0.1 | |||
Ä£ÐÍÒÒ | ¹À¼ÆÖµ$\widehat{{y}_{i}}$£¨2£© | 2.3 | 2 | 1.9 | ||
| ²ÐÖµ$\widehat{{e}_{i}}$£¨2£© | 0.1 | 0 | 0 | |||
£¨¢ò£©¸ÃÊéÉÏÊÐÖ®ºó£¬Êܵ½¹ã´ó¶ÁÕßÈÈÁÒ»¶Ó£¬²»¾Ã±ãÈ«²¿ÊÛóÀ£¬ÓÚÊÇÓ¡Ë¢³§¾ö¶¨½øÐжþ´ÎÓ¡Ë¢£®¸ù¾ÝÊг¡µ÷²é£¬ÐÂÐèÇóÁ¿Îª10ǧ²á£¬ÈôÓ¡Ë¢³§ÒÔÿ²á5ÔªµÄ¼Û¸ñ½«Êé¼®³öÊÛ¸ø¶©»õÉÌ£¬ÊÔ¹À¼ÆÓ¡Ë¢³§¶þ´ÎÓ¡Ë¢»ñµÃµÄÀûÈ󣮣¨°´£¨¢ñ£©ÖÐÄâºÏЧ¹û½ÏºÃµÄÄ£ÐͼÆËãÓ¡Ë¢µ¥²áÊéµÄ³É±¾£©
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |