题目内容
20.设z是复数,|z-i|≤2(i是虚数单位),则|z|的最大值是 ( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由题意画出图形,数形结合得答案.
解答 解:∵|z-i|≤2,
∴复数z在复平面内对应点在以(0,1)为圆心,以2为半径的圆及其内部.![]()
∴|z|的最大值为3.
故选:C.
点评 本题考查复数的代数表示法及其几何意义,考查了复数模的求法,是基础题.
练习册系列答案
相关题目
10.已知实数 x,y满足$\left\{\begin{array}{l}x+y≥a\\ x-y≤a\\ y≤a\end{array}\right.({a>0})$,若z=x2+y2的最小值为 2,则 a的值为( )
| A. | $\sqrt{2}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | 4 |
8.已知a=21.3,b=40.7,c=ln6,则a,b,c的大小关系为( )
| A. | a<b<c | B. | b<c<a | C. | c<a<b | D. | c<b<a |
9.若方程|lnx|=a有两个不等的实根x1和x2,则x1+x2的取值范围是( )
| A. | (1,+∞) | B. | ($\sqrt{2}$,+∞) | C. | (2,+∞) | D. | (0,1) |
10.《最强大脑》是大型科学竞技类真人秀节目,是专注传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:
已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4
( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
下面的临界值表仅参考:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 喜欢《最强大脑》 | 不喜欢《最强大脑》 | 合计 | |
| 男生 | 15 | ||
| 女生 | 15 | ||
| 合计 |
( I)请将上述列联表补充完整;判断是否有99.9%的把握认为喜欢《最强大脑》与性别有关,并说明理由;
( II)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X,求X的分布列及数学期望.
下面的临界值表仅参考:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |