题目内容

9.已知正项数列{an}满足,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N+).
(1)证明数列{$\frac{1}{{a}_{n}}$}为等差数列,并求数列{an}的通项公式;
(2)设bn=(-1)n•n•an•an+1,求数列{bn}的前n项和Tn

分析 (1)a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N+),两边取倒数可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,即可证明,再利用等差数列的通项公式即可得出.
(2)bn=(-1)n•n•an•an+1=(-1)nn$•\frac{1}{(2n-1)(2n+1)}$=$(-1)^{n}•\frac{1}{4}$$(\frac{1}{2n-1}+\frac{1}{2n+1})$.对n分类讨论即可得出.

解答 (1)证明:∵a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N+),两边取倒数可得$\frac{1}{{a}_{n+1}}$=2+$\frac{1}{{a}_{n}}$,即$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,
∴数列{$\frac{1}{{a}_{n}}$}为等差数列,首项为1,公差为2.
∴$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,解得an=$\frac{1}{2n-1}$.
(2)解:bn=(-1)n•n•an•an+1=(-1)nn$•\frac{1}{(2n-1)(2n+1)}$=$(-1)^{n}•\frac{1}{4}$$(\frac{1}{2n-1}+\frac{1}{2n+1})$.
∴n=2k(k∈N*),数列{bn}的前n项和Tn=T2k=$\frac{1}{4}$$[-(1+\frac{1}{3})+(\frac{1}{3}+\frac{1}{5})$-$(\frac{1}{5}+\frac{1}{7})$+…-$(\frac{1}{2n-3}+\frac{1}{2n-1})$+$(\frac{1}{2n-1}+\frac{1}{2n+1})]$
=$\frac{1}{4}$$(-1+\frac{1}{2n+1})$=$\frac{-n}{4n+2}$.
n=2k-1(k∈N*),数列{bn}的前n项和Tn=T2k-1=$\frac{1}{4}$$[-(1+\frac{1}{3})+(\frac{1}{3}+\frac{1}{5})$-$(\frac{1}{5}+\frac{1}{7})$+…+$(\frac{1}{2n-3}+\frac{1}{2n-1})$-$(\frac{1}{2n-1}+\frac{1}{2n+1})]$
=$\frac{1}{4}$$(-1-\frac{1}{2n+1})$=-$\frac{n+1}{4n+2}$.
综上可得:Tn=$\left\{\begin{array}{l}{\frac{-n}{4n+2},n=2k}\\{\frac{-(n+1)}{4n+2},n=2k-1}\end{array}\right.$(k∈N*).

点评 本题考查了数列递推关系、等差数列的定义与通项公式、“裂项求和”方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网