题目内容

18.在正四面体ABCD中,E,F分别为棱AD,BC的中点,连接AF,CE,则异面直线AF与CE所成角的余弦值为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

分析 画出立体图形,根据中点找平行线,把所求的异面直线角转化为一个三角形的内角来计算.

解答 解:由题意可得四面体A-BCD为正四面体,如图,连接BE,取BE的中点K,连接FK,则FK∥CE,
故∠AFK即为所求的异面直线角或者其补角.
设这个正四面体的棱长为2,在△AKF中,AF=$\sqrt{3}$=CE,KF=$\frac{1}{2}$CE=$\frac{\sqrt{3}}{2}$,KE=$\frac{1}{2}$BE=$\frac{\sqrt{3}}{2}$,
∴AK=$\sqrt{A{E}^{2}+K{E}^{2}}$=$\sqrt{{1}^{2}+(\frac{\sqrt{3}}{2})^{2}}$=$\frac{\sqrt{7}}{2}$.
△AKF中,由余弦定理可得 cos∠AFK=$\frac{A{F}^{2}+F{K}^{2}-A{K}^{2}}{2AF•FK}$=$\frac{3+\frac{3}{4}-\frac{7}{4}}{2×\sqrt{3}×\frac{\sqrt{3}}{2}}$=$\frac{2}{3}$.
故选:A.

点评 本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网