题目内容

11.已知函数f(x)=$\frac{1}{2}$-(x-$\sqrt{e}$)(x-$\frac{1}{2}$)(其中x∈(0,+∞)),g(x)=lnx和函数h(x)=$\left\{\begin{array}{l}{f(x)}&{f(x)≥g(x)}\\{g(x)}&{f(x)<g(x)}\end{array}\right.$,若方程h(x)=kx有四个不同的解,则实数k的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{\sqrt{e}}{2e}$)C.($\frac{\sqrt{e}}{2e}$,$\frac{1}{e}$)D.($\frac{1}{e}$,$\frac{\sqrt{e}}{e}$)

分析 作出函数图象,求出切线斜率,根据交点个数得出k的范围.

解答 解:作出h(x)的函数图象如图所示:

设直线y=kx与曲线g(x)=lnx相切,切点为(x0,y0),
则有$\left\{\begin{array}{l}{{y}_{0}=k{x}_{0}}\\{{y}_{0}=ln{x}_{0}}\\{\frac{1}{{x}_{0}}=k}\end{array}\right.$,解得k=$\frac{1}{e}$.
∵h(x)=kx有四个不同的解,
∴直线y=kx与f(x)有2个交点,y=kx与g(x)有2个交点,
∴k<$\frac{1}{e}$,排除D,
设f(x)与g(x)的交点为A,显然A在第一象限,即kOA>0,
∴k>kOA.排除A,B.
故选C.

点评 本题考查了函数的图象与性质,导数的几何意义,属于中档题.

练习册系列答案
相关题目
2.甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在[45,75)内为优质品,从两个企业生产的零件中各随机抽出了500件,测量这些零件的质量指标值,得结果如表:
甲企业:
 分组[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 频数 10 40 115 165 120 45 5
乙企业:
分组[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 频数 5 60 110 160 90 70 5
(1)已知甲企业的500件产品质量指标值的样本方差s2=142,该企业生产的零件质量指标值X服从正态分布N(μ,σ2),其中μ近似为质量指标值的样本平均数$\overline{x}$(注:求$\overline{x}$时,同一组数据用该区间的中点值作代表),σ2近似为样本方差s2,试根据该企业的抽样数据,估计所生产的零件中,质量指标值不低于71.92的产品的概率(精确到0.001)
(2)由以上统计数据完成下面2×2列联表,并问能否在犯错误的概率不超过0.01的前提下,认为“两个分厂生产的零件的质量有差异”
  甲厂乙厂 合计 
 优质品   
 非优质品   
 合计   
附注:
参考数据:$\sqrt{142}$≈11.92
参考公式:P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545,P(μ-3σ<X<μ+3σ)=0.9973.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.0722.706 3.841 5.024 6.635 7.879 10.828 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网