题目内容
16.| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
分析 由题意,从图看出x1,x2∈[a,b],f(x1)=f(x2),可知x1,x2关系函数的对称轴是对称的.即$x=\frac{{x}_{1}+{x}_{2}}{2}$时其中一条对称轴,且f($\frac{{x}_{1}+{x}_{2}}{2}$)=2,f(x1+x2)=$\sqrt{3}$,即可求解φ的值.
解答 解:由题意,从图看出A=2,x1,x2∈[a,b],f(x1)=f(x2),
可知x1,x2关系函数的对称轴是对称的.即$x=\frac{{x}_{1}+{x}_{2}}{2}$时其中一条对称轴,且f($\frac{{x}_{1}+{x}_{2}}{2}$)=2,
∴函数f($\frac{{x}_{1}+{x}_{2}}{2}$)=2Asin(ω($\frac{{x}_{1}+{x}_{2}}{2}$)+φ)=2,
可得:ω($\frac{{x}_{1}+{x}_{2}}{2}$)+φ=$\frac{π}{2}+2kπ$,k∈Z…①.
∵f(x1+x2)=$\sqrt{3}$,
∴函数f(x1+x2)=2Asin(ω(x1+x2)+φ)=$\sqrt{3}$,
可得:ω(x1+x2)+φ=$\frac{π}{3}+2kπ$或$\frac{2π}{3}+2kπ$,k∈Z…②.
令k=0,由①②解得:φ=$\frac{2π}{3}$或$\frac{π}{3}$
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$
故选D.
点评 本题主要考查三角函数的图象和性质的运用,属于中档题.
练习册系列答案
相关题目
6.
执行如图所示的程序框图,若输入n的值为5,则输出s的值为( )
| A. | 2 | B. | 4 | C. | 7 | D. | 11 |
7.某班从甲、乙等7名学生中选4人参加校运会接力比赛,要求甲、乙两人至少有一人参赛,若甲、乙都参赛,则他们不能跑相邻两棒,那么安排接力顺序的不同方式有( )
| A. | 360种 | B. | 520种 | C. | 600种 | D. | 720种 |
8.
如图,在△ABC中,D为线段BC的中点,E,F,G依次为线段AD从上至下的3个四等分点,若$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AP}$,则( )
| A. | 点P与图中的点D重合 | B. | 点P与图中的点E重合 | ||
| C. | 点P与图中的点F重合 | D. | 点P与图中的点G重合 |
11.已知函数f(x)=$\frac{1}{2}$-(x-$\sqrt{e}$)(x-$\frac{1}{2}$)(其中x∈(0,+∞)),g(x)=lnx和函数h(x)=$\left\{\begin{array}{l}{f(x)}&{f(x)≥g(x)}\\{g(x)}&{f(x)<g(x)}\end{array}\right.$,若方程h(x)=kx有四个不同的解,则实数k的取值范围是( )
| A. | (0,$\frac{1}{2}$) | B. | (0,$\frac{\sqrt{e}}{2e}$) | C. | ($\frac{\sqrt{e}}{2e}$,$\frac{1}{e}$) | D. | ($\frac{1}{e}$,$\frac{\sqrt{e}}{e}$) |