题目内容

2.甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在[45,75)内为优质品,从两个企业生产的零件中各随机抽出了500件,测量这些零件的质量指标值,得结果如表:
甲企业:
 分组[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 频数 10 40 115 165 120 45 5
乙企业:
分组[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 频数 5 60 110 160 90 70 5
(1)已知甲企业的500件产品质量指标值的样本方差s2=142,该企业生产的零件质量指标值X服从正态分布N(μ,σ2),其中μ近似为质量指标值的样本平均数$\overline{x}$(注:求$\overline{x}$时,同一组数据用该区间的中点值作代表),σ2近似为样本方差s2,试根据该企业的抽样数据,估计所生产的零件中,质量指标值不低于71.92的产品的概率(精确到0.001)
(2)由以上统计数据完成下面2×2列联表,并问能否在犯错误的概率不超过0.01的前提下,认为“两个分厂生产的零件的质量有差异”
  甲厂乙厂 合计 
 优质品   
 非优质品   
 合计   
附注:
参考数据:$\sqrt{142}$≈11.92
参考公式:P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545,P(μ-3σ<X<μ+3σ)=0.9973.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.0722.706 3.841 5.024 6.635 7.879 10.828 

分析 (1)计算甲企业的平均值,得出甲企业产品的质量指标值X~N(60,142),计算所求的概率值;
(2)根据统计数据填写2×2列联表,计算K2,对照临界值表得出结论.

解答 解:(1)计算甲企业数据的平均值为:
$\overline{x}$=$\frac{1}{500}$×(30×10+40×40+50×115+60×165+70×120+80×45+90×5)=60,
∴μ=60,σ2=142,
且甲企业产品的质量指标值X服从正态分布X~N(60,142),
又σ=$\sqrt{142}$≈11.92,
则P(60-11.92<X<60+11.92)=P(48.08<X<71.92)=0.6826,
P(X>71.92)=$\frac{1-P(48.08<X<71.92)}{2}$=$\frac{1-0.6826}{2}$=0.1587≈0.159,
估计所生产的零件中,质量指标值不低于71.92的产品的概率为0.159;
(2)由以上统计数据填写2×2列联表,

  甲厂乙厂 合计 
 优质品400 360 760 
 非优质品 100140  240
 合计 500 500 1000
计算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{1000{×(400×140-100×360)}^{2}}{760×240×500×500}$≈8.772>6.635,
对照临界值表得出,在犯错误的概率不超过0.01的前提下认为“两个分厂生产的零件质量有差异”.

点评 本题主要考查了独立性检验与正态分布的特点及概率求解问题,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网