ÌâÄ¿ÄÚÈÝ
8£®×ø±êϵÓë²ÎÊý·½³ÌÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+2cos¦È\\ y=2sin¦È\end{array}$£¨¦ÈΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖá°ëÖáΪ¼«ÖᣩÖÐÖ±ÏßlµÄ·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®£¨1£©ÇóÇúÏßCÔÚ¼«×ø±êϵÖеķ½³Ì£»
£¨2£©ÇóÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤£®
·ÖÎö £¨1£©°ÑÇúÏßCµÄ²ÎÊý·½³ÌÀûÓÃͬ½ÇÈý½Çº¯ÊýµÄ»ù±¾¹ØÏµÏûÈ¥²ÎÊý¦È£¬»¯ÎªÆÕͨ·½³Ì£¬ÔÙ¸ù¾Ýx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬»¯Îª¼«×ø±ê·½³Ì£®
£¨2£©°ÑÖ±ÏߺÍÔ²µÄÖ±½Ç×ø±ê·½³ÌÁªÁ¢·½³Ì×飬ÇóµÃ½»µãµÄ×ø±ê£¬ÔÙÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇóµÃÏÒ³¤£®
½â´ð ½â£º£¨1£©ÇúÏßCµÄÆÕͨ·½³ÌΪ£¨x-2£©2+y2=4£¬
¼´x2+y2-4x=0£¬½«$\left\{\begin{array}{l}x=¦Ñcos¦È\\ y=¦Ñsin¦È\end{array}\right.$´úÈë·½³Ìx2+y2-4x=0»¯¼òµÃ¦Ñ=4cos¦È£®
ËùÒÔ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£®
£¨2£©¡ßÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y-4=0£¬
ÓÉ$\left\{\begin{array}{l}{x^2}+{y^2}-4x=0\\ x+y-4=0\end{array}\right.$µÃÖ±ÏßlÓëÇúÏßCµÄ½»µã×ø±êΪA£¨2£¬2£©£¬B£¨4£¬0£©£¬
ËùÒÔÏÒ³¤|AB|=$\sqrt{£¨4-2£©^{2}+£¨0-2£©^{2}}$=2$\sqrt{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é°Ñ²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬ÇóÖ±ÏߺÍÔ²µÄ½»µã×ø±ê£¬Á½µã¼äµÄ¾àÀ빫ʽµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮
| A£® | £¨-1£¬0£© | B£® | £¨-1£¬2£© | C£® | £¨-1£¬2] | D£® | £¨0£¬2] |
| A£® | x+2y-5=0 | B£® | 2x-y+5=0 | C£® | x-2y+5=0 | D£® | 2x+y-5=0 |
| A£® | £¨-1£¬3£© | B£® | £¨0£¬3£© | C£® | £¨0£¬8£© | D£® | £¨-1£¬8£© |