题目内容
9.过点P(-4,0)的直线l与圆C:(x-1)2+y2=5相交于A,B两点,若点A恰好是线段PB的中点,则直线l的方程为x±3y+4=0.分析 当点A为PB中点时,先求出PA2=10,再与圆C:(x-1)2+y2=5联立,求出A的坐标,即可求直线l的方程
解答 解:由割线定理,可得(PC-$\sqrt{5}$)(PC+$\sqrt{5}$)=PA•PB,
∴20=2PA2,
∴PA2=10
设A(x,y),则(x+4)2+y2=10,
与圆C:(x-1)2+y2=5,联立可得x=-1,y=±1
∴直线l的方程为x±3y+4=0.
故答案为:x±3y+4=0.
点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
18.下列函数中,既是偶函数,周期为π的是( )
| A. | y=sin|x| | B. | y=|tanx| | C. | y=|sin2x| | D. | y=cos(2x+$\frac{x}{2}$) |
4.十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:
(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| 男公务员 | 女公务员 | |
| 生二胎 | 40 | 20 |
| 不生二胎 | 20 | 20 |
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |