题目内容

8.如图,在四棱锥P-ABCD中,底面ABCD是边长为m的正方形,PD⊥底面ABCD,且PD=m,PA=PC=$\sqrt{2}$m,若在这个四棱锥内放一个球,则此球的最大半径是(  )
A.$\frac{1}{3}$(2-$\sqrt{2}$)mB.$\frac{1}{2}$(2+$\sqrt{2}$)mC.$\frac{1}{2}$(2-$\sqrt{2}$)mD.$\frac{1}{6}$(2+$\sqrt{2}$)m

分析 此球内切于四棱锥时,半径最大,设该四棱锥的内切球的球心为O,半径为r,连接OA,OB,OC,OD,OP,则VP-ABCD=VO-ABCD+VO-PAD+VO-PAB+VO-PBC+VO-PCD,由此能求出此球的最大半径.

解答 解:由题知,此球内切于四棱锥时,半径最大,
设该四棱锥的内切球的球心为O,半径为r,
连接OA,OB,OC,OD,OP,
则VP-ABCD=VO-ABCD+VO-PAD+VO-PAB+VO-PBC+VO-PCD
即$\frac{1}{3}$×m2×m=$\frac{1}{3}$×m2×r+$\frac{1}{3}$×$\frac{1}{2}$×m2×r+$\frac{1}{3}$×$\frac{1}{2}$×$\sqrt{2}$m2×r+$\frac{1}{3}$×$\frac{1}{2}$×$\sqrt{2}$m2×r+$\frac{1}{3}$×$\frac{1}{2}$×m2×r,
解得r=$\frac{1}{2}$(2-$\sqrt{2}$)m,
所以此球的最大半径是$\frac{1}{2}$(2-$\sqrt{2}$)m.
故选:C.

点评 本题考查球的最大半径的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网