题目内容

13.如图所示,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,A′C的中点E与AB的中点F的距离为$\frac{{\sqrt{2}}}{2}a$.

分析 由在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0,a),A′C的中点E与AB的中点F,知F(a,$\frac{a}{2}$,0),E( $\frac{a}{2}$,$\frac{a}{2}$,$\frac{a}{2}$),利用两点间距离公式能求出A′C的中点E与AB的中点F的距离.

解答 解:如图所示,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,
∵A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0,a),
A′C的中点E与AB的中点F,
∴F(a,$\frac{a}{2}$,0),E( $\frac{a}{2}$,$\frac{a}{2}$,$\frac{a}{2}$),|EF|=$\sqrt{(a-\frac{a}{2})^{2}+(\frac{a}{2}-\frac{a}{2})^{2}+(0-\frac{a}{2})^{2}}$=$\frac{{\sqrt{2}}}{2}a$.
故答案是:$\frac{{\sqrt{2}}}{2}a$.

点评 本题考查空间中两点间距离公式的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网