题目内容

20.在平面直角坐标系xoy中,已知向量$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),0≤x≤π,且f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanx的值;
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$,求x的值;
(3)求f(x)的单调区间和最值.

分析 (1)根据向量的垂直的条件和向量的数量积公式即可求出,
(2)根据向量的数量积公式即可求出,
(3)先化简得到$f(x)=\sqrt{3}sin(x-\frac{π}{6})$,再根据三角函数的性质即可求出

解答 解:(1)∵$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),$\overrightarrow{m}$⊥$\overrightarrow{n}$,0≤x≤π
∴$\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{\sqrt{3}}{2}$cosx+$\frac{3}{2}$sinx=0,
∴tanx=$\frac{\sqrt{3}}{3}$
(2)∵$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),
∴$\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{\sqrt{3}}{2}$cosx+$\frac{3}{2}$sinx=|$\overrightarrow{m}$|•|$\overrightarrow{n}$|cos$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$
∴sin(x-$\frac{π}{6}$)=$\frac{1}{2}$,
∴x-$\frac{π}{6}$=$\frac{π}{6}$或x-$\frac{π}{6}$=$\frac{5π}{6}$
∴$x=\frac{π}{3}或π$;
(3)∵$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),
∴$f(x)=\sqrt{3}sin(x-\frac{π}{6})$,
∴f(x)的增区间$[0,\frac{2π}{3})$,减区间$[\frac{2π}{3},π]$;
∴$f{(x)_{max}}=f(\frac{2π}{3})=\sqrt{3}$;$f{(x)_{min}}=f(0)=-\frac{{\sqrt{3}}}{2}$.

点评 本题考查了向量的数量积公式和向量的垂直以及三角函数的图象和性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网