题目内容
1.若f′(a)=A,则$\underset{lim}{△x→0}$$\frac{f(a+△x)-f(a-△x)}{△x}$=2A.分析 利用导数的定义即可得出.
解答 解:$\underset{lim}{△X→0}\frac{f(a+△X)-f(a-△X)}{△X}$
=$2\underset{lim}{△X→0}\frac{f(a+△X)-f(a-△X)}{2△X}$
=2f′(a)
=2A,
故答案为:2A.
点评 本题考查了导数的定义,属于基础题.
练习册系列答案
相关题目
12.已知i为虚数单位,复数z满足(1-3i)z=10(1+i),则|z|=( )
| A. | $\sqrt{5}$ | B. | 5 | C. | 2$\sqrt{5}$ | D. | 20 |
9.
执行如图所示的程序框图,则输出的a=( )
| A. | -$\frac{1}{4}$ | B. | 5 | C. | $\frac{4}{5}$ | D. | 4 |
16.已知α∈R,sinα+2cosα=0,则tan2α=( )
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
13.汽车业是碳排放量比较大的行业之一,欧盟规定,从2012年开始,将对二氧化碳排放量超过130g/km的M1型汽车进行惩罚,某检测单位对甲、乙两类M1型品牌汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km)
经测算发现,乙品牌M1型汽车二氧化碳排放量的平均值为 $\overline{x_乙}=120g/km$
(Ⅰ)从被检测的5辆甲类M1型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过130g/km的概率是多少?
(Ⅱ)求表中x的值,并比较甲、乙两品牌M1型汽车二氧化碳排放量的稳定性.
(${s^2}=\frac{1}{n}[{(\overline x-{x_1})^2}+{(\overline x-{x_2})^2}+…+{(\overline x-{x_n})^2}]$其中,$\overline x$表示的平均数,n表示样本的数量,xi表示个体,s2表示方差)
| 甲 | 80 | 110 | 120 | 140 | 150 |
| 乙 | 100 | 120 | x | 100 | 160 |
(Ⅰ)从被检测的5辆甲类M1型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过130g/km的概率是多少?
(Ⅱ)求表中x的值,并比较甲、乙两品牌M1型汽车二氧化碳排放量的稳定性.
(${s^2}=\frac{1}{n}[{(\overline x-{x_1})^2}+{(\overline x-{x_2})^2}+…+{(\overline x-{x_n})^2}]$其中,$\overline x$表示的平均数,n表示样本的数量,xi表示个体,s2表示方差)
10.阅读如图所示的程序框图,若输入m=2016,则输出S等于( )

| A. | 10072 | B. | 10082 | C. | 10092 | D. | 20102 |
11.已知数列{an}中,a1=25,4an+1=4an-7,若用Sn表示该数列前n项和,则( )
| A. | 当n=15时,Sn取到最大值 | B. | 当n=16时,Sn取到最大值 | ||
| C. | 当n=15时,Sn取到最小值 | D. | 当n=16,Sn取到最小值 |